Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In the prior post, Factor Attribution 2, I have shown how Factor Attribution can be applied to decompose fund’s returns in to Market, Capitalization, and Value factors, the “three-factor model” of Fama and French. Today, I want to show you a different application of Factor Attribution. First, let’s run Factor Attribution on each the stocks in the S&P 500 to determine it’s Value exposure. Next let’s group stocks into Quantiles based on Value exposure and create back-test for each Quantile. I will rely on the code in the Volatility Quantiles post to create Quantiles.
Let’s start by loading historical prices for all current components of the S&P 500 index.
############################################################################### # Load Systematic Investor Toolbox (SIT) # http://systematicinvestor.wordpress.com/systematic-investor-toolbox/ ############################################################################### setInternet2(TRUE) con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb')) source(con) close(con) #***************************************************************** # Load historical data #****************************************************************** load.packages('quantmod') tickers = sp500.components()$tickers data <- new.env() getSymbols(tickers, src = 'yahoo', from = '1970-01-01', env = data, auto.assign = T) # remove companies with less than 5 years of data rm.index = which( sapply(ls(data), function(x) nrow(data[[x]])) < 1000 ) rm(list=names(rm.index), envir=data) for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T) bt.prep(data, align='keep.all', dates='1994::') tickers = data$symbolnames data.spy <- new.env() getSymbols('SPY', src = 'yahoo', from = '1970-01-01', env = data.spy, auto.assign = T) bt.prep(data.spy, align='keep.all', dates='1994::') #***************************************************************** # Code Strategies #****************************************************************** prices = data$prices nperiods = nrow(prices) n = ncol(prices) models = list() # SPY data.spy$weight[] = NA data.spy$weight[] = 1 models$spy = bt.run(data.spy) # Equal Weight data$weight[] = NA data$weight[] = ntop(prices, n) models$equal.weight = bt.run(data)
Next let’s run Factor Attribution on each the stocks in the S&P 500 to determine it’s Value exposure.
#***************************************************************** # Compute Factor Attribution for each ticker #****************************************************************** periodicity = 'weeks' # load Fama/French factors factors = get.fama.french.data('F-F_Research_Data_Factors', periodicity = periodicity,download = F, clean = F) period.ends = endpoints(data$prices, periodicity) period.ends = period.ends[period.ends > 0] # add factors and align data.fa <- new.env() for(i in tickers) data.fa[[i]] = data[[i]][period.ends,] data.fa$factors = factors$data / 100 bt.prep(data.fa, align='remove.na') index = match( index(data.fa$prices), index(data$prices) ) measure = data$prices[ index, ] for(i in tickers) { cat(i, '\n') # Facto Loadings Regression obj = factor.rolling.regression(data.fa, i, 36, silent=T) measure[,i] = coredata(obj$fl$estimate$HML) }
Finally, let’s group stocks into Quantiles based on Value exposure and create back-test for each Quantile.
#***************************************************************** # Create Value Quantiles #****************************************************************** n.quantiles=5 start.t = 1+36 quantiles = weights = coredata(measure) * NA for( t in start.t:nrow(weights) ) { factor = as.vector(coredata(measure[t,])) ranking = ceiling(n.quantiles * rank(factor, na.last = 'keep','first') / count(factor)) quantiles[t,] = ranking weights[t,] = 1/tapply(rep(1,n), ranking, sum)[ranking] } quantiles = ifna(quantiles,0) #***************************************************************** # Create backtest for each Quintile #****************************************************************** for( i in 1:n.quantiles) { temp = weights * NA temp[] = 0 temp[quantiles == i] = weights[quantiles == i] data$weight[] = NA data$weight[index,] = temp models[[ paste('Q',i,sep='_') ]] = bt.run(data, silent = T) } #***************************************************************** # Create Report #****************************************************************** plotbt.custom.report.part1(models) plotbt.strategy.sidebyside(models)
There is no linear relationship between Value Quantiles and historical performance. I’m also suspecting that that implied Value exposure might be quite different than the real Price/Book ratio for each stock. Let me know what do you think about this approach.
In the next post I will show another example of Factor Attribution.
To view the complete source code for this example, please have a look at the bt.fa.value.quantiles.test() function in bt.test.r at github.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.