Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Today I want to show a simple example of the 1-Month Reversal Strategy. Each month we will buy 20% of loosers and short sell 20% of winners from the S&P 500 index. The loosers and winners are measured by prior 1-Month returns. I will use this post to set the stage for my next post that will show how Factor Attribution can boost performance of the 1-Month Reversal Strategy. Following is the references for my next post, in case you want to get a flavor, Short-Term Residual Reversal by D. Blitz, J. Huij, S. Lansdorp, M. Verbeek (2011) paper.
Let’s start by loading historical prices for all companies in the S&P 500 and create SPY and Equal Weight benchmarks using the Systematic Investor Toolbox:
############################################################################### # Load Systematic Investor Toolbox (SIT) # http://systematicinvestor.wordpress.com/systematic-investor-toolbox/ ############################################################################### setInternet2(TRUE) con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb')) source(con) close(con) #***************************************************************** # Load historical data #****************************************************************** load.packages('quantmod') tickers = sp500.components()$tickers data <- new.env() getSymbols(tickers, src = 'yahoo', from = '1970-01-01', env = data, auto.assign = T) # remove companies with less than 5 years of data rm.index = which( sapply(ls(data), function(x) nrow(data[[x]])) < 1000 ) rm(list=names(rm.index), envir=data) for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T) bt.prep(data, align='keep.all', dates='1994::') tickers = data$symbolnames data.spy <- new.env() getSymbols('SPY', src = 'yahoo', from = '1970-01-01', env = data.spy, auto.assign = T) bt.prep(data.spy, align='keep.all', dates='1994::') #***************************************************************** # Code Strategies #****************************************************************** prices = data$prices n = ncol(prices) #***************************************************************** # Setup monthly periods #****************************************************************** periodicity = 'months' period.ends = endpoints(data$prices, periodicity) period.ends = period.ends[period.ends > 0] prices = prices[period.ends, ] #***************************************************************** # Create Benchmarks, omit results for the first 36 months - to be consistent with Factor Attribution #****************************************************************** models = list() # SPY data.spy$weight[] = NA data.spy$weight[] = 1 data.spy$weight[1:period.ends[36],] = NA models$spy = bt.run(data.spy) # Equal Weight data$weight[] = NA data$weight[period.ends,] = ntop(prices, n) data$weight[1:period.ends[36],] = NA models$equal.weight = bt.run(data)
Next let’s group stocks into Quantiles based on 1-Month returns and create back-test for each Quantile. I will rely on the code in the Volatility Quantiles post to create Quantiles.
#***************************************************************** # Create Reversal Quantiles #****************************************************************** n.quantiles = 5 start.t = 1 + 36 quantiles = weights = coredata(prices) * NA one.month = coredata(prices / mlag(prices)) for( t in start.t:nrow(weights) ) { factor = as.vector(one.month[t,]) ranking = ceiling(n.quantiles * rank(factor, na.last = 'keep','first') / count(factor)) quantiles[t,] = ranking weights[t,] = 1/tapply(rep(1,n), ranking, sum)[ranking] } quantiles = ifna(quantiles,0) #***************************************************************** # Create backtest for each Quintile #****************************************************************** temp = weights * NA for( i in 1:n.quantiles) { temp[] = 0 temp[quantiles == i] = weights[quantiles == i] data$weight[] = NA data$weight[period.ends,] = temp models[[ paste('M1_Q',i,sep='') ]] = bt.run(data, silent = T) }
Finally, let’s construct Q1/Q5 spread and create summary performance report.
#***************************************************************** # Create Q1-Q5 spread #****************************************************************** temp[] = 0 temp[quantiles == 1] = weights[quantiles == 1] temp[quantiles == n.quantiles] = -weights[quantiles == n.quantiles] data$weight[] = NA data$weight[period.ends,] = temp models$spread = bt.run(data, silent = T) #***************************************************************** # Create Report #****************************************************************** plotbt.custom.report.part1(models) plotbt.custom.report.part1(models[spl('spy,equal.weight,spread')])
In the next post I will show how Factor Attribution can boost performance of the 1-Month Reversal Strategy using the methodology presented in the Short-Term Residual Reversal by D. Blitz, J. Huij, S. Lansdorp, M. Verbeek (2011) paper.
To view the complete source code for this example, please have a look at the bt.one.month.test() function in bt.test.r at github.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.