Universal portfolio, part 5
[This article was first published on logopt: a journey in R, finance and open source, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The first three tables in Universal Portfolios presents the same information in numerical form as some of the plots. The following code generates all three tables by defining a function then calling it with suitable parameters. The output is text only, so does not match the typography of the original.Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
# tables 8.1, 8.2 and 8.3 of Cover “Universal Portfolios”
require(logopt)
x <- nyse.cover.1962.1984
ShowTable <- function(a,b) {
cat(sprintf(“%s versus %s\n”, a, b))
cat(sprintf(“——————\n”))
cat(sprintf(“b Sn(b)\n”))
cat(sprintf(“——————\n”))
xab <- x[,c(a,b)]
nDays <- dim(xab)[1]
Days <- 1:nDays
alphas <- seq(0,1,by=0.05)
crps <- alphas
for (i in 1:length(crps)) {
crps[i] <- crp(xab, c(1-alphas[i], alphas[i]))[nDays]
cat(sprintf(“%.2f %9.4f\n”,1-alphas[i], crps[i]))
}
cat(sprintf(“——————\n”))
cat(sprintf(“Target wealth: Sn* = %.4f\n”,max(crps)))
cat(sprintf(“Best rebalanced portfolio: bn* = %4.2f\n”,1-alphas[which.max(crps)]))
cat(sprintf(“Best constituent stock: %.4f\n”, max(c(crps[1], crps[length(crps)]))))
cat(sprintf(“Universal wealth: Sn^ = %.4f\n\n\n\n”, mean(crps)))
}
ShowTable(“iroqu”,”kinar”)
ShowTable(“comme”,”kinar”)
ShowTable(“comme”,”meico”)
iroqu versus kinar
——————
b Sn(b)
——————
1.00 8.9151
0.95 13.7712
0.90 20.2276
0.85 28.2560
0.80 37.5429
0.75 47.4513
0.70 57.0581
0.65 65.2793
0.60 71.0652
0.55 73.6190
0.50 72.5766
0.45 68.0915
0.40 60.7981
0.35 51.6645
0.30 41.7831
0.25 32.1593
0.20 23.5559
0.15 16.4196
0.10 10.8910
0.05 6.8737
0.00 4.1276
——————
Target wealth: Sn* = 73.6190
Best rebalanced portfolio: bn* = 0.55
Best constituent stock: 8.9151
Universal wealth: Sn^ = 38.6727
comme versus kinar
——————
b Sn(b)
——————
1.00 52.0203
0.95 68.2890
0.90 85.9255
0.85 103.6415
0.80 119.8472
0.75 132.8752
0.70 141.2588
0.65 144.0035
0.60 140.7803
0.55 131.9910
0.50 118.6854
0.45 102.3564
0.40 84.6655
0.35 67.1703
0.30 51.1127
0.25 37.3042
0.20 26.1131
0.15 17.5315
0.10 11.2883
0.05 6.9704
0.00 4.1276
——————
Target wealth: Sn* = 144.0035
Best rebalanced portfolio: bn* = 0.65
Best constituent stock: 52.0203
Universal wealth: Sn^ = 78.4742
comme versus meico
——————
b Sn(b)
——————
1.00 52.0203
0.95 61.0165
0.90 70.0625
0.85 78.7602
0.80 86.6815
0.75 93.4026
0.70 98.5414
0.65 101.7927
0.60 102.9589
0.55 101.9691
0.50 98.8869
0.45 93.9033
0.40 87.3172
0.35 79.5057
0.30 70.8890
0.25 61.8932
0.20 52.9162
0.15 44.3012
0.10 36.3178
0.05 29.1538
0.00 22.9160
——————
Target wealth: Sn* = 102.9589
Best rebalanced portfolio: bn* = 0.60
Best constituent stock: 52.0203
Universal wealth: Sn^ = 72.6289
The final table is more complex to reproduce and also more interesting, we’ll tackle it in a next post.
To leave a comment for the author, please follow the link and comment on their blog: logopt: a journey in R, finance and open source.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.