Factor Attribution 2
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I want to continue with Factor Attribution theme that I presented in the Factor Attribution post. I have re-organized the code logic into the following 4 functions:
- factor.rolling.regression – Factor Attribution over given rolling window
- factor.rolling.regression.detail.plot – detail time-series plot and histogram for each factor
- factor.rolling.regression.style.plot – historical style plot for selected 2 factors
- factor.rolling.regression.bt.plot – compare fund’s performance with portfolios implied by Factor Attribution
Let’s first replicate style and performance charts from the Three Factor Rolling Regression Viewer at the mas financial tools web site.
############################################################################### # Load Systematic Investor Toolbox (SIT) # http://systematicinvestor.wordpress.com/systematic-investor-toolbox/ ############################################################################### setInternet2(TRUE) con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb')) source(con) close(con) #***************************************************************** # Load historical data #****************************************************************** load.packages('quantmod') tickers = 'VISVX' periodicity = 'months' data <- new.env() getSymbols(tickers, src = 'yahoo', from = '1980-01-01', env = data, auto.assign = T) for(i in ls(data)) { temp = adjustOHLC(data[[i]], use.Adjusted=T) period.ends = endpoints(temp, periodicity) period.ends = period.ends[period.ends > 0] if(periodicity == 'months') { # reformat date to match Fama French Data monthly.dates = as.Date(paste(format(index(temp)[period.ends], '%Y%m'),'01',sep=''), '%Y%m%d') data[[i]] = make.xts(coredata(temp[period.ends,]), monthly.dates) } else data[[i]] = temp[period.ends,] } data.fund = data[[tickers]] #***************************************************************** # Fama/French factors #****************************************************************** factors = get.fama.french.data('F-F_Research_Data_Factors', periodicity = periodicity,download = T, clean = F) # add factors and align data <- new.env() data[[tickers]] = data.fund data$factors = factors$data / 100 bt.prep(data, align='remove.na', dates='1994::') #***************************************************************** # Facto Loadings Regression #****************************************************************** obj = factor.rolling.regression(data, tickers, 36) #***************************************************************** # Reports #****************************************************************** factor.rolling.regression.detail.plot(obj) factor.rolling.regression.style.plot(obj) factor.rolling.regression.bt.plot(obj)
Next let’s add the Momentum factor from the Kenneth R French: Data Library and run Factor Attribution one more time.
#***************************************************************** # Fama/French factors + Momentum #****************************************************************** factors = get.fama.french.data('F-F_Research_Data_Factors', periodicity = periodicity,download = T, clean = F) factors.extra = get.fama.french.data('F-F_Momentum_Factor', periodicity = periodicity,download = T, clean = F) factors$data = merge(factors$data, factors.extra$data) # add factors and align data <- new.env() data[[tickers]] = data.fund data$factors = factors$data / 100 bt.prep(data, align='remove.na', dates='1994::') #***************************************************************** # Facto Loadings Regression #****************************************************************** obj = factor.rolling.regression(data, tickers, 36) #***************************************************************** # Reports #****************************************************************** factor.rolling.regression.detail.plot(obj) factor.rolling.regression.style.plot(obj) factor.rolling.regression.bt.plot(obj)
To visualize style from the Momentum point of view, let’s create a style chart that shows fund’s attribution in the HML / Momentum space.
factor.rolling.regression.style.plot(obj, xfactor='HML', yfactor='Mom')
I designed the Factor Attribution functions to take any user specified factors. This way you can easily run Factor Attribution on any combination of the historical factor returns from the Kenneth R French: Data Library Or use your own historical factor returns data.
To view the complete source code for this example, please have a look at the three.factor.rolling.regression() function in bt.test.r at github.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.