Site icon R-bloggers

What are the distributions on the positive k-dimensional quadrant with parametrizable covariance matrix? (bis)

[This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Wondering about the question I posted on Friday (on StackExchange, no satisfactory answer so far!), I looked further at the special case of the gamma distribution I suggested at the end. Starting from the moment conditions,

and

the solution is (hopefully) given by the system

The resolution of this system obviously imposes conditions on those moments, like

So I ran a small R experiment checking when there was no acceptable solution to the system. I started with five moments that satisfied the basic Stieltjes and determinant conditions

# basically anything
mu=runif(2,0,10)
# Jensen inequality
sig=c(mu[1]^2/runif(1),mu[2]^2/runif(1))
# my R code returning the solution if any
sol(mu,c(sig,runif(1,-sqrt(prod(sig)),sqrt(prod(sig)))))

and got a fair share (20%) of rejections, e.g.

> sol(mu,c(sig,runif(1,-sqrt(prod(sig)),sqrt(prod(sig)))))
$solub
[1] FALSE

$alpha
[1]  0.8086944  0.1220291 -0.1491023

$beta
[1] 0.1086459 0.5320866

However, not being sure about the constraints on the five moments I am now left with another question: what are the necessary and sufficient conditions on the five moments of a pair of positive vectors?! Or, more generally, what are the necessary and sufficient conditions on the k-dimensional μ and Σ for them to be first and second moments of a positive k-dimensional vector?


Filed under: R, Statistics, University life

To leave a comment for the author, please follow the link and comment on their blog: Xi'an's Og » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.