Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Today I want to show how to use Volatility Position Sizing to improve strategy’s Risk Adjusted Performance. I will use the Average True Range (ATR) as a measure of Volatility and will increase allocation during low Volatility periods and will decrease allocation during high Volatility periods. Following are two good references that explain these strategy in detail:
First, let’s load prices for SPY and compute Buy & Hold performance using the Systematic Investor Toolbox:
############################################################################### # Load Systematic Investor Toolbox (SIT) # http://systematicinvestor.wordpress.com/systematic-investor-toolbox/ ############################################################################### con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb')) source(con) close(con) #***************************************************************** # Load historical data #****************************************************************** load.packages('quantmod') tickers = spl('SPY') data <- new.env() getSymbols(tickers, src = 'yahoo', from = '1970-01-01', env = data, auto.assign = T) for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T) bt.prep(data, align='keep.all', dates='1970::') #***************************************************************** # Code Strategies #****************************************************************** prices = data$prices nperiods = nrow(prices) models = list() #***************************************************************** # Buy & Hold #****************************************************************** data$weight[] = 0 data$weight[] = 1 models$buy.hold = bt.run.share(data, clean.signal=T)
Next, let’s modify Buy & Hold strategy to vary it’s allocation according to the Average True Range (ATR).
#***************************************************************** # Volatility Position Sizing - ATR #****************************************************************** atr = bt.apply(data, function(x) ATR(HLC(x),20)[,'atr']) # position size in units = ((porfolio size * % of capital to risk)/(ATR*2)) data$weight[] = NA capital = 100000 # risk 2% of capital data$weight[] = (capital * 2/100) / (2 * atr) # make sure you are not committing more than 100% max.allocation = capital / prices data$weight[] = iif(data$weight > max.allocation, max.allocation,data$weight) models$buy.hold.2atr = bt.run(data, type='share', capital=capital) #***************************************************************** # Create Report #****************************************************************** models = rev(models) plotbt.custom.report.part1(models) plotbt.custom.report.part2(models)
The Sharpe and DVR are both higher for new strategy and draw-downs are lower.
To view the complete source code for this example, please have a look at the bt.position.sizing.test() function in factor.model.test.r at github.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.