Site icon R-bloggers

Borrowing Ideas from Timely Portfolio

[This article was first published on Systematic Investor » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I want to highlight two great Visualization techniques I discovered by reading the fine blog from Timely Portfolio.

First method is based on the lm System on Nikkei with New Chart. Let’s visualize Strategy’s Long/Short/Not Invested periods by highlighting the underlying (i.e. buy & hold) with green/red/gray. Following is a sample code that implements this idea using Systematic Investor Toolbox.

###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
    source(con)
close(con)

	#*****************************************************************
	# Load historical data
	#****************************************************************** 
	load.packages('quantmod')	
	tickers = spl('SPY')

	data <- new.env()
	getSymbols(tickers, src = 'yahoo', from = '1970-01-01', env = data, auto.assign = T)
		for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)		
	bt.prep(data, align='keep.all', dates='2000::2011')

	#*****************************************************************
	# Code Strategies
	#****************************************************************** 
	prices = data$prices    
	
	# Buy & Hold	
	data$weight[] = 1
	buy.hold = bt.run(data)	
	
	# Strategy
	ma10 = bt.apply.matrix(prices, EMA, 10)
	ma50 = bt.apply.matrix(prices, EMA, 50)
	ma200 = bt.apply.matrix(prices, EMA, 200)
	data$weight[] = NA;
		data$weight[] = iif(ma10 > ma50 & ma50 > ma200, 1, 
				iif(ma10 < ma50 & ma50 < ma200, -1, 0))
	strategy = bt.run.share(data, clean.signal=F)	
	
	#*****************************************************************
	# Visualization of system Entry and Exit based on
	# http://timelyportfolio.blogspot.ca/2011/08/lm-system-on-nikkei-with-new-chart.html
	#****************************************************************** 	
	layout(1)
	plota(strategy$eq, type='l', ylim=range(buy.hold$eq,strategy$eq))
	
	col = iif(strategy$weight > 0, 'green', iif(strategy$weight < 0, 'red', 'gray'))
	plota.lines(buy.hold$eq, type='l', col=col)			
		plota.legend('strategy,Long,Short,Not Invested','black,green,red,gray')		

We can visually attribute from the plot periods when Strategy is Long/Short/Not Invested.

Another method is based on the Drawdown Visualization . Let’s visualize Drawdowns by highlighting periods when drawdown is large than 10% with yellow and larger than 15% with orange.

	#*****************************************************************	
	# Drawdown Visualization 
	# 10% drawdowns in yellow and 15% drawdowns in orange
	# http://timelyportfolio.blogspot.ca/2011/08/drawdown-visualization.html
	#*****************************************************************	
	layout(1:2)
	drawdowns = compute.drawdown(strategy$eq)
	highlight = drawdowns < -0.1
	
	plota.control$col.x.highlight = iif(drawdowns < -0.15, 'orange', iif(drawdowns < -0.1, 'yellow', 0))	
	
	plota(strategy$eq, type='l', plotX=F, x.highlight = highlight, ylim=range(buy.hold$eq,strategy$eq))
		plota.legend('strategy,10% Drawdown,15%  Drawdown','black,yellow,orange')
		
	plota(100*drawdowns, type='l', x.highlight = highlight)
		plota.legend('drawdown', 'black', x='bottomleft')

The next logical step is to introduce highlighting into the backtest plots. This is extremely easy to do because I use plota library to create backtesting reports.

	#*****************************************************************
	# Create Report
	#****************************************************************** 		
	plota.control$col.x.highlight = iif(drawdowns < -0.15, 'orange', iif(drawdowns < -0.1, 'yellow', 0))				
	highlight = drawdowns < -0.1

	plotbt.custom.report.part1(strategy, buy.hold, x.highlight = highlight)

Please let me know what other Visualization techniques do you use.

To view the complete source code for this example, please have a look at the bt.timelyportfolio.visualization.test() function in bt.test.r at github.


To leave a comment for the author, please follow the link and comment on their blog: Systematic Investor » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.