Site icon R-bloggers

A thought on Linear Models on Stocks

[This article was first published on DataPunks.com » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Timely Portfolio has a nice post about linear models sytems for stock.

The idea follows from the steps below:

The idea is quite simple, and so far, from Timely Portfolio’s post, it looks like the drawdown is behaving nicely.

It seems like the idea could be extended to a non-linear method. The residuals are getting larger and larger, and this indicates that linear methods are less reliable as time goes by.

View Code R
# code from Timely Portfolio
# http://timelyportfolio.blogspot.ca/2011/08/unrequited-lm-love.html
require(PerformanceAnalytics)
require(quantmod)
 
getSymbols("^GSPC",from="1896-01-01",to=Sys.Date())
 
GSPC <- to.weekly(GSPC)[,4]
 
width = 25
for (i in (width+1):NROW(GSPC)) {
        linmod <- lm(GSPC[((i-width):i),1]~index(GSPC[((i-width):i)]))
        ifelse(i==width+1,signal <- coredata(linmod$residuals[length(linmod$residuals)]),
                signal <- rbind(signal,coredata(linmod$residuals[length(linmod$residuals)])))
}
signal <- as.xts(signal,order.by=index(GSPC[(width+1):NROW(GSPC)]))
plot(signal, main="Residuals through time")
plot(log(signal), main="Log of Residuals through time")
To leave a comment for the author, please follow the link and comment on their blog: DataPunks.com » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.