[This article was first published on dahtah » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
INLA author Håvard Rue wrote me to point out a problem in the Functional ANOVA code given in this post. I made a mistake in setting the precision of the fixed effects (I used “default” instead of “prec”). I’ve put Håvard’s corrected version of the code below.
##Usage: ##Load the data ##cw = load.data() ##Run INLA ##res <- inla.fanova.temperature(cw) ## ##Plot "fitted" model ##plot.fitted(cw,res) ## ##etc. require(fda) require(INLA) require(ggplot2) require(stringr) require(mgcv) require(directlabels) ##Use the same colour scheme Ramsay&Silverman did col.scale <- c('red','blue','darkgreen','black') load.data <- function() { cw <- with(CanadianWeather,ldply(1:length(place),function(ind) data.frame(temp=dailyAv[,ind,1],place=place[ind],region=region[ind],day=1:365))) ##We need to create multiple copies of the time index because we need multiple functions of time cw <- mutate(cw,day.region=day,day.place=day, region.ind=as.numeric(region), place.ind=as.numeric(place)) ##INLA apparently doesn't like the original factor levels, we modify them levels(cw$place) <- str_replace(levels(cw$place),'. ','_') cw } inla.fanova.temperature <- function(cw) { ##The formula for the model formula <- temp ~ f(day.region,model="rw2",replicate=region.ind,cyclic=T, diagonal=1e-5)+ f(day,model="rw2",cyclic=T, diagonal=1e-5)+ f(day.place,model="rw2",cyclic=T,replicate=place.ind, diagonal=1e-5) + region ##Note that 'region' comes in as a factor, and inla treats factors ##in the same way as the 'lm' function, i.e., using contrasts This ##is not strictly necessary in a Bayesian analysis and here ##complicates things a bit The default "treatment" contrasts used ##here mean that the "place" factor has the Pacific region as the ##default level to which other regions are compared ##Call inla We use control.fixed to impose a proper gaussian prior ##on the fixed effects and control.predictor to make INLA compute ##marginal distributions for each value of the linear predictor ##The call takes 160 sec. on my machine inla(formula,data=cw,family="gaussian", control.predictor=list(compute=T), control.fixed=list(prec=0.01, prec.intercept = 0.01),verbose=T) } plot.raw.data <- function(cw) { p <- ggplot(cw,aes(day,temp,group=place,colour=region))+geom_point(alpha=.1)+geom_smooth(method="gam",form = y ~ s(x))+labs(x='Day of the year',y='Temp. (C)')+scale_colour_manual(values=col.scale)+facet_wrap(~ region) p + theme_bw() + opts(legend.position="none") } plot.fitted <- function(cw,res) { cw$fitted <- (res$summary.fitted.values$mean) p <- ggplot(cw,aes(day,temp,group=place,colour=region))+geom_point(alpha=.1)+facet_wrap(~ region)+scale_colour_manual(values=col.scale)+geom_path(aes(y=fitted)) p + theme_bw() + opts(legend.position="none") } extract.regional.effects <- function(cw,res) { reg.effect <- reff(res)$day.reg names(reg.effect)[1] <- 'day' reg.effect$region <- gl(4,365,lab=levels(cw$region)) ##Total regional effect is equal to smooth component + intercept + regional effect feff.region <- feff(res)[str_detect(attributes(feff(res))$row.names,"region"),] feff.inter <- feff(res)[str_detect(attributes(feff(res))$row.names,"Inter"),] offsets <- c(feff.inter$mean,feff.inter$mean+feff.region$mean) reg.effect$total.effect <- reg.effect$mean+rep(offsets,each=365) reg.effect } plot.regional.effects <- function(cw,res,smooth=F) { reg.effect <- extract.regional.effects(cw,res) p <- ggplot(reg.effect,aes(day,total.effect,colour=region))+geom_line()+scale_colour_manual(values=c('red','blue','darkgreen','black'))+scale_y_continuous(lim=c(-18,15)) if (smooth) p <- p + geom_smooth(method="gam",form = y ~ s(x),lty=2) p <- p + geom_abline(slope=0,intercept=0,lty=3,col="lightblue") p <- p + geom_dl(aes(label=region),method="top.qp") p + theme_bw() +opts(panel.grid.minor = theme_blank(),panel.grid.major = theme_blank(),legend.position="none") + labs(x='\n Day of the year',y='Temp. (C)') } plot.regional.avg <- function(cw,res) { reg.effect <- extract.regional.effects(cw,res) regionavg <- data.frame(day=1:365, glob.effect=reff(res)$day$mean, reg.avg=reff(res)$day$mean+reg.effect$total.effect, region=reg.effect$region ) p <- ggplot(regionavg,aes(day,reg.avg,colour=region))+geom_line()+facet_wrap(~ region)+scale_colour_manual(values=col.scale)+geom_line(aes(y=glob.effect),col="darkgrey",lty=2) p <- p + geom_abline(slope=0,intercept=0,lty=3,col="lightblue") p + theme_bw() +opts(panel.grid.minor = theme_blank(),panel.grid.major = theme_blank(),legend.position="none") + labs(x='\n Day of the year',y='Temp. (C)') } ##Extract "random effects" summary from an inla object reff <- function(res.inla) { res.inla$summary.random } ##Extract "fixed effects" feff <- function(res.inla) { as.data.frame(res.inla$summary.fixed) }
To leave a comment for the author, please follow the link and comment on their blog: dahtah » R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.