Record Long Term Treasury Returns

[This article was first published on Timely Portfolio, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I mistakenly assume everyone knows that US Treasury Returns have been extreme in 2011.  As we near the end of the year, I thought it would be beneficial to look at the world’s best performer while incorporating some new graphical techniques.  There is also an opinion (NOT INVESTMENT ADVICE) expressed in one of the charts.

From TimelyPortfolio
From TimelyPortfolio

R code in GIST:

require(quantmod)
require(PerformanceAnalytics)
require(latticeExtra)
require(grid)
require(reshape)
tckr <- "VUSTX"
getSymbols(tckr,
from="1900-01-01", to=format(Sys.Date(),"%Y-%m-%d"),
adjust = TRUE)
roc.back <- ROC(VUSTX[,4], n=200)
#code from http://stackoverflow.com/questions/4472691/calculate-returns-over-period-of-time
#lag never seems to work in reverse so I used this for forward returns
hold <- 200
f <- function(x) log(tail(x, 1)) - log(head(x, 1))
roc.forward <- as.xts(rollapply(as.vector(VUSTX[,4]), FUN=f, width=hold+1, align="left", na.pad=T),index(VUSTX))
roc.df <- as.data.frame(cbind(index(roc.back),coredata(roc.back),coredata(roc.forward)),stringsAsFactors=FALSE)
colnames(roc.df) <- c("date","back","forward")
roc.melt <- melt(roc.df,id.vars=1)
#get date as date rather than integer
roc.melt[,1] <- as.Date(roc.melt[,1])
colnames(roc.melt) <- c("date","forwardback","roc")
#get all forward negative returns
roc.meltneg <- cbind(roc.melt[,1:2],ifelse(roc.melt[,3] < 0 & roc.melt[,2]== "forward",1,0) * roc.melt[,3])
#get all forward positive returns
roc.meltpos <- cbind(roc.melt[,1:2],ifelse(roc.melt[,3] > 0 & roc.melt[,2]== "forward",1,0) * roc.melt[,3])
colnames(roc.meltneg) <- c("date","forwardback","roc")
colnames(roc.meltpos) <- c("date","forwardback","roc")
#scatter plot of forward and back 200 day returns
plot(roc.df[,2:3],main="Vanguard US Long Treasury (VUSTX)
200 Day Rate of Change Forward and Back")
abline(lm(roc.df[,3]~roc.df[,2]),col="blue",lwd=2)
#do linear regression on just those with back 200 day roc > 20%
#abline(lm(roc.df[which(roc.df[,2]>0.2),3]~roc.df[which(roc.df[,2]>0.2),2]),col="red",lwd=3)
abline(h=0,col="grey70")
abline(v=0.2,col="grey70")
text(x=0.23, y=-0.04, "200 day forward
when back > 20%", col="red",
cex = 0.9, adj=0)
points(roc.df[which(roc.df[,2]>0.2),2:3],col="red")
#practice with lattice and grid for another look
titletext <- "Vanguard US Long Treasury (VUSTX)
200 Day Rate of Change Forward and Back"
latticePlot <- xyplot(roc~date, data=roc.melt[which(roc.melt[,2]=="back"),], type="l",
auto.key=list(lwd=3,lty="solid",pch="n",text="back",y = .8, corner = c(0, 0)),
par.settings = theEconomist.theme(box = "transparent"),
lattice.options = theEconomist.opts()) +
xyplot(roc~date, groups=forwardback , data=roc.meltneg[which(roc.meltneg[,2]=="forward"),],
origin=0,
par.settings = simpleTheme(col = "red", border="red",alpha=0.3) ,
panel = panel.xyarea) +
xyplot(roc~date, groups=forwardback , data=roc.meltpos[which(roc.meltneg[,2]=="forward"),],
origin=0,
par.settings = simpleTheme(col = "green", border="green",alpha=0.3) ,
panel = panel.xyarea)
#borrowed heavily from http://www.stat.auckland.ac.nz/~paul/Talks/Rgraphics.pdf
dev.new()
pushViewport(viewport(layout=grid.layout(2,1,
heights = c(unit(0.10,"npc"),unit(0.95,"npc")))))
pushViewport(viewport(layout.pos.row=1))
grid.rect(gp=gpar(fill="azure3",col="azure3"))
grid.text(titletext, x=unit(1,"cm"),
y=unit(0.90,"npc") ,
just=c("left","top"))
popViewport()
pushViewport(viewport(layout.pos.row=2))
print(latticePlot,newpage=FALSE)
popViewport(2)
#chart.Correlation(roc.df[which(roc.df[,2] > 0.2),])

To leave a comment for the author, please follow the link and comment on their blog: Timely Portfolio.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)