Site icon R-bloggers

Three free books on R for Statistics

[This article was first published on Revolutions, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Avril Coghlan, a lecturer at University College Cork in Ireland, has written and made available for free three books ideal for students or practitioners new to R who want to use it for multivariate analysis, time series analysis or biomedical statistics. Each book begins with practical advice for installing and using R in general, before diving into their specialized topics:

  • A Little Book of R for Multivariate Analysis (pdf, 49 pages) is a simple introduction to multivariate analysis using the R statistics software. It covers topics such as reading and plotting multivariate data, principal components analysis, and linear discriminant analysis.
  • A Little Book of R for Biomedical Statistics (pdf, 33 pages) is a simple introduction to biomedical statistics using the R statistics software, with sections on relative risks and odds ratios, dose-response analysis, clinical trial design and meta-analysis.
  • A Little Book of R for Time Series (pdf, 71 pages) is a simple introduction to time series analysis using the R statistics software (have you spotted the pattern yet?). It includes instruction on how to read and plot time series, time series decomposition, forecasting, and ARIMA models.

All three books are free to use, share and remix under a Creative Commons license, and are available from Dr Coghlan's home page linked below.

Dr Avril Coghlan: avrilomics

To leave a comment for the author, please follow the link and comment on their blog: Revolutions.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.