Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I wrote a simple Backtesting library to evaluate and analyze Trading Strategies. I will use this library to present the performance of trading strategies that I will study in the next series of posts.
It is very easy to write a simple Backtesting routine in R, for example:
bt.simple <- function(data, signal) { # lag singal signal = Lag(signal, 1) # back fill signal = na.locf(signal, na.rm = FALSE) signal[is.na(signal)] = 0 # calculate Close-to-Close returns ret = ROC(Cl(data)) ret[1] = 0 # compute stats bt = list() bt$ret = ret * signal bt$equity = cumprod(1 + bt$ret) return(bt) } # Test for bt.simple functions load.packages('quantmod') # load historical prices from Yahoo Finance data = getSymbols('SPY', src = 'yahoo', from = '1980-01-01', auto.assign = F) # Buy & Hold signal = rep(1, nrow(data)) buy.hold = bt.simple(data, signal) # MA Cross sma = SMA(Cl(data),200) signal = ifelse(Cl(data) > sma, 1, 0) sma.cross = bt.simple(data, signal) # Create a chart showing the strategies perfromance in 2000:2009 dates = '2000::2009' buy.hold.equity = buy.hold$equity[dates] / as.double(buy.hold$equity[dates][1]) sma.cross.equity = sma.cross$equity[dates] / as.double(sma.cross$equity[dates][1]) chartSeries(buy.hold.equity, TA = c(addTA(sma.cross.equity, on=1, col='red')), theme ='white', yrange = range(buy.hold.equity, sma.cross.equity) )
The code I implemented in the Systematic Investor Toolbox is a bit longer, but follows the same logic. It provides extra functionality: ability to handle multiple securities, weights or shares backtesting, and customized reporting. Following is a sample code to implement the above strategies using the backtesting library in the Systematic Investor Toolbox:
# Load Systematic Investor Toolbox (SIT) setInternet2(TRUE) con = gzcon(url('https://github.com/systematicinvestor/SIT/raw/master/sit.gz', 'rb')) source(con) close(con) #***************************************************************** # Load historical data #****************************************************************** tickers = spl('SPY') data <- new.env() getSymbols(tickers, src = 'yahoo', from = '1970-01-01', env = data, auto.assign = T) bt.prep(data, align='keep.all', dates='1970::2011') #***************************************************************** # Code Strategies #****************************************************************** prices = data$prices # Buy & Hold data$weight[] = 1 buy.hold = bt.run(data) # MA Cross sma = bt.apply(data, function(x) { SMA(Cl(x), 200) } ) data$weight[] = NA data$weight[] = iif(prices >= sma, 1, 0) sma.cross = bt.run(data, trade.summary=T) #***************************************************************** # Create Report #****************************************************************** plotbt.custom.report(sma.cross, buy.hold)
The bt.prep function merges and aligns all symbols in the data environment. The bt.apply function applies user given function to each symbol in the data environment. The bt.run computes the equity curve of strategy specified by data$weight matrix. The data$weight matrix holds weights (signals) to open/close positions. The plotbt.custom.report function creates the customized report, which can be fined tuned by the user. Here is a sample output:
> buy.hold = bt.run(data) Performance summary : CAGR Best Worst 7.2 14.5 -9.9 > sma.cross = bt.run(data, trade.summary=T) Performance summary : CAGR Best Worst 6.3 5.8 -7.2
The visual performance summary:
The statistical performance summary:
To view the complete source code for this example, please have a look at the bt.test() function in bt.r at github.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.