Evolving Domestic Frontier
[This article was first published on Timely Portfolio, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
When we learn the efficient frontier, most are misled to believe that the frontier is static and unchanging. However, we should have all learned by recent experience that the frontier is as volatile as the assets that construct it. If we look at just US Stocks (SP 500) and US Bonds (Barclays Agg), we can see how this shifting frontier can dramatically affect your returns.
Using R and fPortfolio, let’s construct the frontier every rolling 5-year period to see what has happened since 1975.
From TimelyPortfolio |
R code (click to download from Google Docs):
require(quantmod) require(fPortfolio) require(reshape) ############################################################# #get data; unfortunately cannot share since I would violate #copyright sp_agg <- read.csv("C:\\Users\\Kent.TLEAVELL_NT\\Documents\\old\\R\\sp_agg.csv",stringsAsFactors=FALSE) sp_agg <- sp_agg[2:NROW(sp_agg),3:NCOL(sp_agg)] sp_agg <- sp_agg[,c(1,3,5)] len <- nchar(sp_agg[,1]) xtsdate <- paste(substr(sp_agg[,1],len-3,len),"-", ifelse(len==9,"0",""),substr(sp_agg[,1],1,len-8),"-01",sep="") sp_agg.xts <- xts(data.matrix(sp_agg[,2:NCOL(sp_agg)]),order.by=as.Date(xtsdate)) sp_agg.xts <- sp_agg.xts/100 ############################################################# #for svg #require(Cairo) #CairoSVG("frontier.svg", width=8 ,height=8 ) #jpeg(filename="evolving frontier.jpg", # quality=100,width=6, height = 7.5, units="in",res=96)############################################################# ## spec - Spec = portfolioSpec() setTargetReturn(Spec) = mean(colMeans(as.timeSeries(sp_agg.xts))) ## constraints - Constraints = "LongOnly" #get frontiers by 5-year range from = time(as.timeSeries(sp_agg.xts))[c(1,1,49,109,169,229,289,349,385)] to = time(as.timeSeries(sp_agg.xts))[c(NROW(sp_agg.xts),48,108,168,228,288,348,NROW(sp_agg.xts)-8,NROW(sp_agg.xts)-8)] rollFron <- rollingPortfolioFrontier(as.timeSeries(sp_agg.xts),Spec,Constraints, from=from,to=to) #chartcol <- topo.colors(length(rollFron)) chartcol <- 1:length(rollFron) #hindsight bias; yellow is too hard to read so change chartcol[length(rollFron)-2] <- "goldenrod" i=1 frontierPlot(rollFron[[1]],col=rep(chartcol[1],2),xlim=c(0,0.08),ylim=c(-0.01,0.025)) frontierlabels <- frontierPoints(rollFron[[i]]) text(x=frontierlabels[NROW(frontierlabels),1],y=frontierlabels[NROW(frontierlabels),2], labels=paste(from[i]," to ",to[i],sep=""), pos=4,offset=0.5,cex=0.5,col = chartcol[i]) for (i in 2:(length(rollFron)-3) ) { frontierPlot(rollFron[[i]],add=TRUE,col = rep(chartcol[i],2),pch=19,auto=FALSE, title=FALSE) frontierlabels <- frontierPoints(rollFron[[i]]) text(x=frontierlabels[NROW(frontierlabels),1],y=frontierlabels[NROW(frontierlabels),2], labels=paste(from[i]," to ",to[i],sep=""), pos=4,offset=0.5,cex=0.5,col = chartcol[i]) } i=7 lowerFrontier = frontierPoints(rollFron[[i]], frontier = "both") points(lowerFrontier,col = rep(chartcol[i],2),pch=19) frontierlabels <- frontierPoints(rollFron[[i]]) text(x=frontierlabels[1,1],y=frontierlabels[1,2], labels=paste(from[i]," to ",to[i],sep=""), pos=4,offset=0.5,cex=0.5,col = chartcol[i]) #legend("topright",legend=paste(from,to,sep=" "),pch=19, # col=chartcol,cex=0.7) for (i in 8:length(rollFron)) { lowerFrontier = frontierPoints(rollFron[[i]], frontier = "lower") points(lowerFrontier,col = rep(chartcol[i],2),pch=19) frontierlabels <- frontierPoints(rollFron[[i]],frontier="lower") text(x=frontierlabels[1,1],y=frontierlabels[1,2], labels=paste(from[i]," to ",to[i],sep=""), pos=4,offset=0.5,cex=0.5,col = chartcol[i]) } # #frontier <- portfolioFrontier(as.timeSeries(sp_agg.xts)) #frontierPlot(frontier,col=rep(chartcol[length(rollFron)+1],2),add=TRUE,pch=19,auto=FALSE, # title=FALSE) #dev.off()
To leave a comment for the author, please follow the link and comment on their blog: Timely Portfolio.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.