[This article was first published on My Life as a Mock Quant in English, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Writing the article “How much does “Beta” change depending on time?“, I learned how to create an animation by using R language. Then, I would like to continue do that in this article.
In this article, I visualize time series of JGB term structure Ministry of Finance Japan publishes because I’m japanese!
You can download these data from here. You can get daily yield curve data, but I visualized these as monthly data for simplicity.
You can easily understand how JGB term structure behave and Japanese yield gradually go down.
The source code to create it is below.
(To run, you need to install xts, animation package, and ImageMagick)
library(xts) #Source of JGB curve source.jgb <- NULL source.jgb[[length(source.jgb) + 1]] <- "http://www.mof.go.jp/jgbs/reference/interest_rate/data/jgbcm_1974-1979.csv" source.jgb[[length(source.jgb) + 1]] <- "http://www.mof.go.jp/jgbs/reference/interest_rate/data/jgbcm_1980-1989.csv" source.jgb[[length(source.jgb) + 1]] <- "http://www.mof.go.jp/jgbs/reference/interest_rate/data/jgbcm_1990-1999.csv" source.jgb[[length(source.jgb) + 1]] <- "http://www.mof.go.jp/jgbs/reference/interest_rate/data/jgbcm_2000-2009.csv" source.jgb[[length(source.jgb) + 1]] <- "http://www.mof.go.jp/jgbs/reference/interest_rate/data/jgbcm_2010.csv" source.jgb[[length(source.jgb) + 1]] <- "http://www.mof.go.jp/jgbs/reference/interest_rate/jgbcm.csv" #From Japanese era To ChristianEra ToChristianEra <- function(x) { era <- substr(x, 1, 1) year <- as.numeric(substr(x, 2, nchar(x))) if(era == "H"){ year <- year + 1988 }else if(era == "S"){ year <- year + 1925 } as.character(year) } #Down load yield curve and convert to xts object GetJGBYield <- function(source.url) { jgb <- read.csv(source.url, stringsAsFactors = FALSE) #Extract date only jgb.day <- strsplit(jgb[, 1], "\\.") #stop warning warn.old <- getOption("warn") options(warn = -1) #From Japanese era To ChristianEra jgb.day <- lapply(jgb.day, function(x)c(ToChristianEra(x[1]), x[2:length(x)])) #From date string to date object jgb[, 1] <- as.Date(sapply(jgb.day, function(x)Reduce(function(y,z)paste(y,z, sep="-"),x))) #Convert data from string to numeric jgb[, -1] <- apply(jgb[, -1], 2, as.numeric) options(warn = warn.old) as.xts(read.zoo(jgb)) } #Down load JBG yield jgb.list <- lapply(source.jgb, GetJGBYield) #convert one xts object jgb.xts <- Reduce(rbind, jgb.list) #Interpolate(nearest value) coredata(jgb.xts) <- na.locf(t(na.locf(t(coredata(jgb.xts))))) #to monthly jgb.xts <- jgb.xts[endpoints(jgb.xts, on="months",k = 1)] #Label for x-axis label.term <- paste(gsub("X", "", colnames(jgb.xts)), "Y", sep="") #The range of y y.max <- c(min(jgb.xts), max(jgb.xts)) #plot one image Snap <- function(val){ term.structure <- coredata(val) index.date <- index(val) par(xaxt="n") plot(t(term.structure),type="l",lwd=3, col = 2, xlab = "Term", ylab = "Rate", ylim = y.max) par(xaxt="s") axis(1, 1:length(label.term), label.term) text(0.5, y.max[2], as.character(index.date), pos = 4) } #save as animation library(animation) saveGIF({ for(i in 1:nrow(jgb.xts)){Snap(jgb.xts[i])} },interval = 0.005)
To leave a comment for the author, please follow the link and comment on their blog: My Life as a Mock Quant in English.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.