ggplot2 Version of Figures in “25 Recipes for Getting Started with R”

[This article was first published on YGC » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

In order to provide an option to compare graphs produced by basic internal plot function and ggplot2, I recreated the figures in the book, 25 Recipes for Getting Started with R, with ggplot2.

The code used to create the images is in separate paragraphs, allowing easy comparison.

1.16 Creating a Scatter Plot

plot(cars)

ggplot(cars,aes(speed,dist))+geom_point()

1.17 Creating a Bar Chart

heights <- tapply(airquality$Temp, airquality$Month, mean)
par(mfrow=c(1,2))
barplot(heights)
barplot(heights,
        main="Mean Temp. by Month",
        names.arg=c("May", "Jun", "Jul", "Aug", "Sep"),
        ylab="Temp (deg. F)")

require(gridExtra)
heights=ddply(airquality,.(Month), mean)
heights$Month=as.character(heights$Month)
p1 <- ggplot(heights, aes(x=Month,weight=Temp))+
    geom_bar()
p2 <- ggplot(heights, aes(x=factor(heights$Month,
                          labels=c("May", "Jun", "Jul", "Aug", "Sep")),
                          weight=Temp))+
    geom_bar()+
    opts(title="Mean Temp. By Month") +
    xlab("") +
    ylab("Temp (deg. F)")

grid.arrange(p1,p2, ncol=2)

1.18 Creating a Box Plot

y <- c(-5, rnorm(100), 5)
boxplot(y)

ggplot()+geom_boxplot(aes(x=factor(1),y=y))+xlab("")+ylab("")

1.19 Creating a Histogram

data(Cars93, package="MASS")
par(mfrow=c(1,2))
hist(Cars93$MPG.city)
hist(Cars93$MPG.city, 20)

p <- ggplot(Cars93, aes(MPG.city))
p1 <- p + geom_histogram(binwidth=diff(range(Cars93$MPG.city))/5)
p2 <- p + geom_histogram(binwidth=diff(range(Cars93$MPG.city))/20)
grid.arrange(p1,p2, ncol=2)

1.23 Diagnosing a Linear Regression

data(iris)
m = lm( Sepal.Length ~ Sepal.Width, data=iris)
par(mfrow=c(2,2))
plot(m)

r <- residuals(m)
yh <- predict(m)
scatterplot <- function(x,y, title="", xlab="", ylab="") {
	d <- data.frame(x=x,y=y)
	p <- ggplot(d, aes(x=x,y=y)) + geom_point() + opts(title=title) + xlab(xlab) + ylab(ylab)
	return(p)
}

p1 <- scatterplot(yh,r,
                  title="Residuals vs Fitted",
                  xlab="Fitted values",
                  ylab="Residuals")
p1 <- p1 +geom_hline(yintercept=0)+geom_smooth()

s <- sqrt(deviance(m)/df.residual(m))
rs <- r/s

qqplot <- function(y,
                   distribution=qnorm,
                   title="Normal Q-Q",
                   xlab="Theretical Quantiles",
                   ylab="Sample Quantiles") {
    require(ggplot2)
    x <- distribution(ppoints(y))
    d <- data.frame(x=x, y=sort(y))
    p <- ggplot(d, aes(x=x, y=y)) +
        geom_point() +
            geom_line(aes(x=x, y=x)) +
                opts(title=title) +
                    xlab(xlab) +
                        ylab(ylab)
    return(p)
}

p2 <- qqplot(rs, ylab="Standardized residuals")

sqrt.rs <- sqrt(abs(rs))
p3 <- scatterplot(yh,sqrt.rs,
                  title="Scale-Location",
                  xlab="Fitted values",
                  ylab=expression(sqrt("Standardized residuals")))
p3 <- p3 + geom_smooth()

hii <- lm.influence(m, do.coef = FALSE)$hat
p4 <- scatterplot(hii,rs)
p4 <- p4+
    geom_hline(yintercept=0)+
    geom_smooth() +
    geom_text(aes(x=min(hii)+diff(range(hii))*0.3,
                  y=min(rs)+diff(range(rs))*0.04,
                  label="--   Cook's distance", size=3))+
    opts(legend.position="none")

grid.arrange(p1,p2,p3,p4, ncol=2)

Related Posts

To leave a comment for the author, please follow the link and comment on their blog: YGC » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)