Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In honor of the press release Dow Jones Indexes To Develop, Co-Brand Index Family With LSP Partners two days ago, I thought I would show another slightly different use of Ralph Vince’s The Leverage Space Trading Model.
Using the R LSPM package, we can build a monthly system around the probProfit calculation. This particular system will enter long when the short term (12 month) probProfit exceeds the longer term (36 month) probProfit. It exits when the short term falls below the longer term.
From TimelyPortfolio |
From TimelyPortfolio |
Feel free to substitute any index. Some of my favorites are German Dax GDAXI, Japan Nikkei N225, Korea Kospi KS11, and Signapore Straits Times STI for international testing. Additional US testing might look at NDX, RUT, CYC, XBD, HGX, REI, DJUSBK, OSX or anything that you can think of to break it.
The results are not fantastic, but the considerable drawdown reductions is nice. Let me know how you would improve.
R code:
#Please see au.tra.sy blog http://www.automated-trading-system.com/
#for original code and http://www.fosstrading.com for some of the
#other techniques
require(PerformanceAnalytics)
require(PApages)
require(quantmod)
require(LSPM)
tckr<-“^GSPC”
start<-“1929-01-01”
end<- format(Sys.Date(),”%Y-%m-%d”) # yyyy-mm-dd
# Pull tckr index data from Yahoo! Finance
getSymbols(tckr, from=start, to=end)
GSPC<-adjustOHLC(GSPC,use.Adjusted=T)
GSPC<-to.monthly(GSPC)
rtn<-monthlyReturn(GSPC[,4])
# Define JPT function
jointProbTable <- function(x, n=3, FUN=median, …) {
# handle case with no negative returns; use -0.01
for (sys in 1:numsys) {
if (min(x[,sys])> -1) x[,sys][which.min(x[,sys])]<- -0.01
}
# Function to bin data
quantize <- function(x, n, FUN=median, …) {
if(is.character(FUN)) FUN <- get(FUN)
bins <- cut(x, n, labels=FALSE)
res <- sapply(1:NROW(x), function(i) FUN(x[bins==bins[i]], …))
}
# Allow for different values of ‘n’ for each system in ‘x’
if(NROW(n)==1) {
n <- rep(n,NCOL(x))
} else
if(NROW(n)!=NCOL(x)) stop(“invalid ‘n'”)
# Bin data in ‘x’
qd <- sapply(1:NCOL(x), function(i) quantize(x[,i],n=n[i],FUN=FUN,…))
# Aggregate probabilities
probs <- rep(1/NROW(x),NROW(x))
res <- aggregate(probs, by=lapply(1:NCOL(qd), function(i) qd[,i]), sum)
# Clean up output, return lsp object
colnames(res) <- colnames(x)
res <- lsp(res[,1:NCOL(x)],res[,NCOL(res)])
return(res)
}
# I know there are prettier ways to accomplish
# but I have to live within my limits
numsys<-1
numbins<-12
# Set Walk-Forward parameters (number of periods) for short
optim<-9 # 9 monthly returns
wf<-1 #walk forward 1 month; we’ll set horizon separately
# Calculate number of WF cycles
numCycles = floor((nrow(rtn)-optim)/wf)
for (i in 0:(numCycles-1)) {
# Define cycle boundaries
start<-1+(i*wf)
end<-optim+(i*wf)
# Get returns for optimization cycle and create the JPT
jpt <- jointProbTable(rtn[start:end,1:numsys],n=rep(numbins,numsys))
outcomes<-jpt[[1]]
probs<-jpt[[2]]
port<-lsp(outcomes,probs)
profitProb<-probProfit(port,target=0,horizon=6)
profitProbWF<-c(rep(1,wf)) %o% profitProb
maxLossWF<-c(rep(1,wf)) %o% jpt$maxLoss
#make xts
profitProbWF<-xts(profitProbWF,order.by=index(rtn[(end+1):(end+wf)]))
maxLossWF<-xts(maxLossWF,order.by=index(rtn[(end+1):(end+wf)]))
if (i==0) profitProbHistory<-profitProbWF else profitProbHistory<-rbind(profitProbHistory,profitProbWF)
if (i==0) maxLossHistory<-maxLossWF else maxLossHistory<-rbind(maxLossHistory,maxLossWF)
}
# Set Walk-Forward parameters (number of periods) for long
optim<-30 # 30 monthly returns
wf<-1 #walk forward 1 month; we’ll set horizon separately
# Calculate number of WF cycles
numCycles = floor((nrow(rtn)-optim)/wf)
for (i in 0:(numCycles-1)) {
# Define cycle boundaries
start<-1+(i*wf)
end<-optim+(i*wf)
# Get returns for optimization cycle and create the JPT
jpt <- jointProbTable(rtn[start:end,1:numsys],n=rep(numbins,numsys))
outcomes<-jpt[[1]]
probs<-jpt[[2]]
port<-lsp(outcomes,probs)
profitProb<-probProfit(port,target=0,horizon=3)
profitProbWF<-c(rep(1,wf)) %o% profitProb
maxLossWF<-c(rep(1,wf)) %o% jpt$maxLoss
#make xts
profitProbWFlong<-xts(profitProbWF,order.by=index(rtn[(end+1):(end+wf)]))
maxLossWFlong<-xts(maxLossWF,order.by=index(rtn[(end+1):(end+wf)]))
if (i==0) profitProbHistorylong<-profitProbWFlong else profitProbHistorylong<-rbind(profitProbHistorylong,profitProbWFlong)
if (i==0) maxLossHistorylong<-maxLossWFlong else maxLossHistorylong<-rbind(maxLossHistorylong,maxLossWFlong)
}
signalshortterm<-profitProbHistory
#adjust the long term with maxLoss to hopefully reduce drawdown
signallongterm<-profitProbHistorylong – maxLossHistorylong
chartSeries(signalshortterm,TA=”addTA(signallongterm,on=1)”, theme=”white”, name=”Short and Long Term Probability of Profit”)
# Create the signals and enter when long term is < short term
sigup <- ifelse(signallongterm < signalshortterm,1,0)
# no need for lag since signal generated from previous months]
# sigup <- lag(sigup,1) # Note k=1 implies a move *forward*
# Replace missing signals with no position
# (generally just at beginning of series)
sigup[is.na(sigup)] <- 0
#Calculate equity curves
eq_up <- cumprod(1+(rtn)*sigup)
perf_compare<-merge(sigup*rtn,rtn[(optim+1):NROW(rtn)])
colnames(perf_compare)<-c(“LSPM probProfit System”,tckr)
charts.PerformanceSummary(perf_compare,ylog=TRUE,legend.loc=”topleft”,main=”LSPM probProfit System Performance Comparison”)
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.