[This article was first published on Stat Bandit » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Last night at the DC R Users meetup, which was our largest meetup to date, I gave an introductory presentation on data munging, and spent a bit of time on the split-apply-combine paradigm that I use almost daily in my work. I talked mainly about the packages plyr
and doBy
, which I use a lot now. David Smith posted a link on the Revolution blog to this article by Steve Miller, talking about the virtues of the data.table
package for doing “by-group processing”. It got me thinking about changing my workflow yet again and engaging this package in my computational workflow. I also noticed that Hadley Wickham tweeted that he wants to make plyr faster as well in the near future, which will of course be a very welcome development.
To leave a comment for the author, please follow the link and comment on their blog: Stat Bandit » R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.