[This article was first published on Freakonometrics - Tag - R-english, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I am always surprised to see many people on Twitter tweeting about #opendata,
e.g. @data4all, @usdatagov, @datapublicatwit, @ProPublica or
@open3 among so many others…
Initially, I was also very enthousiastic, but I have to admit that open data are rarely raw data. Which is what I am
usually looking for, as a statistician…Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Consider the following example: I was wondering (Valentine’s day is approaching) when will a man born in 1975 (say) get married – if he ever gets married ? More technically, I was looking for a distribution of the age of first marriage (given the year of birth), including the proportion of men that will never get married, for that specific cohort.
Note that we can also focus on women (e.g. here). Is it possible to use that open data to get an estimation of the distribution of first marriage for some specific cohort ? (and to answer the question I asked).
Here, we have two dimensions: on line
We are interested at a longitudinal lecture of the table, i.e. consider some man born year
base=read.table("http://freakonometrics.free.fr/mariage-age-uk.csv", sep=";",header=TRUE) m=base[1:16,] m=m[,3:10] m=as.matrix(m) triangle=matrix(NA,nrow(m),ncol(m)) n=ncol(m) for(i in 1:16){ triangle[i,]=diag(m[i-1+(1:n),]) } triangle[nrow(m),1]=m[nrow(m),1] triangle [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [1,] 12 104 222 247 198 132 51 34 [2,] 8 89 228 257 202 102 75 49 [3,] 4 80 209 247 168 129 92 50 [4,] 4 73 196 236 181 140 88 45 [5,] 3 78 242 206 161 114 68 47 [6,] 11 150 223 199 157 105 73 39 [7,] 12 117 194 183 136 96 61 36 [8,] 11 118 202 175 122 92 62 40 [9,] 15 147 218 162 127 98 72 48 [10,] 20 185 204 171 138 112 82 NA [11,] 31 197 240 209 172 138 NA NA [12,] 34 196 233 202 169 NA NA NA [13,] 35 166 210 199 NA NA NA NA [14,] 26 139 210 NA NA NA NA NA [15,] 18 104 NA NA NA NA NA NA [16,] 10 NA NA NA NA NA NA NA Y=as.vector(triangle) YEARS=seq(1918,1993,by=5) AGES=seq(22,57,by=5) X1=rep(YEARS,length(AGES)) X2=rep(AGES,each=length(YEARS)) reg=glm(Y~as.factor(X1)+as.factor(X2),family="poisson") summary(reg) Call: glm(formula = Y ~ as.factor(X1) + as.factor(X2), family = "poisson") Deviance Residuals: Min 1Q Median 3Q Max -5.4502 -1.1611 -0.0603 1.0471 4.6214 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 2.8300461 0.0712160 39.739 < 2e-16 *** as.factor(X1)1923 0.0099503 0.0446105 0.223 0.823497 as.factor(X1)1928 -0.0212236 0.0449605 -0.472 0.636891 as.factor(X1)1933 -0.0377019 0.0451489 -0.835 0.403686 as.factor(X1)1938 -0.0844692 0.0456962 -1.848 0.064531 . as.factor(X1)1943 -0.0439519 0.0452209 -0.972 0.331082 as.factor(X1)1948 -0.1803236 0.0468786 -3.847 0.000120 *** as.factor(X1)1953 -0.1960149 0.0470802 -4.163 3.14e-05 *** as.factor(X1)1958 -0.1199103 0.0461237 -2.600 0.009329 ** as.factor(X1)1963 -0.0446620 0.0458508 -0.974 0.330020 as.factor(X1)1968 0.1192561 0.0450437 2.648 0.008107 ** as.factor(X1)1973 0.0985671 0.0472460 2.086 0.036956 * as.factor(X1)1978 0.0356199 0.0520094 0.685 0.493423 as.factor(X1)1983 0.0004365 0.0617191 0.007 0.994357 as.factor(X1)1988 -0.2191428 0.0981189 -2.233 0.025520 * as.factor(X1)1993 -0.5274610 0.3241477 -1.627 0.103689 as.factor(X2)27 2.0748202 0.0679193 30.548 < 2e-16 *** as.factor(X2)32 2.5768802 0.0667480 38.606 < 2e-16 *** as.factor(X2)37 2.5350787 0.0671736 37.739 < 2e-16 *** as.factor(X2)42 2.2883203 0.0683441 33.482 < 2e-16 *** as.factor(X2)47 1.9601540 0.0704276 27.832 < 2e-16 *** as.factor(X2)52 1.5216903 0.0745623 20.408 < 2e-16 *** as.factor(X2)57 1.0060665 0.0822708 12.229 < 2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: 5299.30 on 99 degrees of freedom Residual deviance: 375.53 on 77 degrees of freedom (28 observations deleted due to missingness) AIC: 1052.1 Number of Fisher Scoring iterations: 5
We can now predict the number of marriages per year, and per cohort
Yp=predict(reg,type="response") tYp=matrix(Yp,nrow(m),ncol(m)) tYp[16,] tYp[16,] [1] 10.00000 222.94525 209.32773 159.87855 115.06971 42.59102 [7] 18.70168 148.92360
The errors (Pearson error) look like that
Ep=residuals(reg,type="pearson")
apply(tYp,1,sum) [1] 919.948 838.762 846.301 816.552 943.559 930.280 857.871 896.113 [9] 905.086 948.087 895.862 853.738 826.003 816.192 813.974 927.437i.e. if we look at the graph
So open data might be interesting. The problem is that most of the time, the data are somehow normalized (or aggregated). And then, it becomes difficult to use them…
So I will have to work further to be able to write something (mathematically valid) on marriage strategy before Valentine’s day…. to be continued.To leave a comment for the author, please follow the link and comment on their blog: Freakonometrics - Tag - R-english.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.