[This article was first published on Statistic on aiR, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Here I present some functions I wrote to recreate some of the most common image effect available in all image editor.Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
They require the library rimage.
To load the image, use:
y <- read.jpeg("path")
To display the image, use:
plot(y)
rgb2sepia <- function(img){ iRed <- img[,,1]*255 iGreen <- img[,,2]*255 iBlue <- img[,,3]*255 oRed <- iRed * .393 + iGreen * .769 + iBlue * .189 oGreen <- iRed * .349 + iGreen * .686 + iBlue * .168 oBlue <- iRed * .272 + iGreen * .534 + iBlue * .131 qw <- array( c(oRed/255 , oGreen/255 , oBlue/255), dim=c(dim(iRed)[1],dim(iRed)[2],3) ) imagematrix(qw, type="rgb") } plot(rgb2sepia(y))
rgb2neg <- function(img){ iRed <- img[,,1] iGreen <- img[,,2] iBlue <- img[,,3] oRed <- (1 - iRed) oGreen <- (1 - iGreen) oBlue <- (1 - iBlue) qw <- array( c(oRed, oGreen, oBlue), dim=c(dim(iRed)[1],dim(iRed)[2],3) ) imagematrix(qw, type="rgb") } plot(rgb2neg(y))
pixmatr <- function(a, n){ aa <- seq(1,dim(a)[1],n) ll <- seq(1,dim(a)[2],n) for(i in 1:(length(aa)-1) ){ for(j in 1:(length(ll)-1) ){ sub1 <- a[aa[i]:(aa[i+1]-1),ll[j]:(ll[j+1]-1)] k <- mean(sub1) sub1m <- matrix( rep(k, n*n), n, n) a[aa[i]:(aa[i+1]-1),ll[j]:(ll[j+1]-1)] <- sub1m } } for(j in 1:(length(ll)-1) ){ sub1 <- a[max(aa):dim(a)[1],ll[j]:(ll[j+1]-1)] k <- mean(sub1) sub1m <- matrix( rep(k, nrow(sub1)*ncol(sub1)), nrow(sub1), ncol(sub1)) a[max(aa):dim(a)[1],ll[j]:(ll[j+1]-1)] <- sub1m } for(i in 1:(length(aa)-1) ){ sub1 <- a[aa[i]:(aa[i+1]-1),max(ll):dim(a)[2]] k <- mean(sub1) sub1m <- matrix( rep(k, nrow(sub1)*ncol(sub1)), nrow(sub1), ncol(sub1)) a[aa[i]:(aa[i+1]-1),max(ll):dim(a)[2]] <- sub1m } sub1 <- a[max(aa):dim(a)[1], max(ll):dim(a)[2]] k <- mean(sub1) sub1m <- matrix( rep(k, nrow(sub1)*ncol(sub1)), nrow(sub1), ncol(sub1)) a[max(aa):dim(a)[1], max(ll):dim(a)[2]] <- sub1m a } rgb2pix <- function(img,n){ iRed <- img[,,1]*255 iGreen <- img[,,2]*255 iBlue <- img[,,3]*255 oRed <- pixmatr(iRed,n) oGreen <- pixmatr(iGreen,n) oBlue <- pixmatr(iBlue,n) qw <- array( c(oRed/255 , oGreen/255 , oBlue/255), dim=c(dim(iRed)[1],dim(iRed)[2],3) ) imagematrix(qw, type="rgb") } plot(rgb2pix(y, 6)) plot(rgb2pix(y, 10))
rgb2blu <- function(img){ iRed <- img[,,1] iGreen <- img[,,2] iBlue <- img[,,3] oRed <- matrix(0, dim(iRed)[1], dim(iRed)[2]) oGreen <- iGreen oBlue <- iBlue qw <- array( c(oRed, oGreen, oBlue), dim=c(dim(iRed)[1],dim(iRed)[2],3) ) imagematrix(qw, type="rgb") } plot(rgb2blu(y))
rgb2vio <- function(img){ iRed <- img[,,1] iGreen <- img[,,2] iBlue <- img[,,3] oRed <- iRed oGreen <- matrix(0, dim(iRed)[1], dim(iRed)[2]) oBlue <- iBlue qw <- array( c(oRed, oGreen, oBlue), dim=c(dim(iRed)[1],dim(iRed)[2],3) ) imagematrix(qw, type="rgb") } plot(rgb2vio(y))
rgb2yel <- function(img){ iRed <- img[,,1] iGreen <- img[,,2] iBlue <- img[,,3] oRed <- iRed oGreen <- iGreen oBlue <- matrix(0, dim(iRed)[1], dim(iRed)[2]) qw <- array( c(oRed, oGreen, oBlue), dim=c(dim(iRed)[1],dim(iRed)[2],3) ) imagematrix(qw, type="rgb") } plot(rgb2yel(y))
rgb2bri <- function(img, n){ iRed <- img[,,1] iGreen <- img[,,2] iBlue <- img[,,3] oRed <- iRed + (iRed * n) oGreen <- iGreen + (iGreen * n) oBlue <- iBlue + (iBlue * n) qw <- array( c(oRed, oGreen, oBlue), dim=c(dim(iRed)[1],dim(iRed)[2],3) ) imagematrix(qw, type="rgb") } plot(rgb2bri(y, +0.5)) plot(rgb2bri(y, -0.5))
rgb2ban <- function(img, n){ iRed <- img[,,1]*255 iGreen <- img[,,2]*255 iBlue <- img[,,3]*255 band_size <- trunc(255/n) oRed <- band_size * trunc(iRed / band_size) oGreen <- band_size * trunc(iGreen / band_size) oBlue <- band_size * trunc(iBlue / band_size) qw <- array( c(oRed/255, oGreen/255, oBlue/255), dim=c(dim(iRed)[1],dim(iRed)[2],3) ) imagematrix(qw, type="rgb") } plot(rgb2ban(y, 5)) plot(rgb2ban(y, 10))
rgb2sol <- function(img){ iRed <- img[,,1]*255 iGreen <- img[,,2]*255 iBlue <- img[,,3]*255 for(i in 1:dim(iRed)[1]){ for(j in 1:dim(iRed)[2]){ if(iRed[i,j]<128) iRed[i,j] <- 255-2*iRed[i,j] else iRed[i,j] <- 2*(iRed[i,j]-128) } } for(i in 1:dim(iGreen)[1]){ for(j in 1:dim(iGreen)[2]){ if(iGreen[i,j]<128) iGreen[i,j] <- 255-2*iGreen[i,j] else iGreen[i,j] <- 2*(iGreen[i,j]-128) } } for(i in 1:dim(iBlue)[1]){ for(j in 1:dim(iBlue)[2]){ if(iBlue[i,j]<128) iBlue[i,j] <- 255-2*iBlue[i,j] else iBlue[i,j] <- 2*(iBlue[i,j]-128) } } qw <- array( c(iRed/255, iGreen/255, iBlue/255), dim=c(dim(iRed)[1],dim(iRed)[2],3) ) imagematrix(qw, type="rgb") } plot(rgb2sol(y))
To leave a comment for the author, please follow the link and comment on their blog: Statistic on aiR.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.