Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Monte Carlo methods have been the dominant form of approximate inference for Bayesian statistics over the last couple of decades. Monte Carlo methods are interesting as a technical topic of research in themselves, as well as enjoying widespread practical use. In a diverse number of application areas Monte Carlo methods have enabled Bayesian inference over classes of statistical models which previously would have been infeasible. Despite this broad and sustained attention, it is often still far from clear how best to set up a Monte Carlo method for a given problem, how to diagnose if it is working well, and how to improve under-performing methods. The impact of these issues is even more pronounced with new emerging applications.
What does the workshop address and accomplish?
Identifying features of applications of Monte Carlo methods: This workshop is aimed equally at practitioners and core Monte Carlo researchers. For practitioners we hope to identify what properties of applications are important for selecting, running and checking a Monte Carlo algorithm. Monte Carlo methods are applied to a broad variety of problems. The workshop aims to identify and explore what properties of these disparate areas are important to think about when applying Monte Carlo methods.
Filed under: Mountains, R, Statistics, Travel, University life Tagged: Bayesian computation, Bayesian inference, Bayesian statistics, machine learning, Monte Carlo methods, NIPS 2010, Vancouver, Whistler
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.