[This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
As the discrepancy [from 1] in the sum of the nine probabilities seemed too blatant to be attributed to numerical error given the problem scale, I went and checked my R code for the probabilities and found a choose(9,3) instead of a choose(6,3) in the last line… The fit between the true distribution and the observed frequencies is now much better
> chisq.test(obs,p=pdiag)
Chi-squared test for given probabilities
data: obs
X-squared = 16.378, df = 6, p-value = 0.01186
since a p-value of 1% is a bit in the far tail of the distribution.
Filed under: R, Statistics Tagged: combinatorics, correction, Monte Carlo, simulation, sudoku, uniformity
To leave a comment for the author, please follow the link and comment on their blog: Xi'an's Og » R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.