Site icon R-bloggers

abbreviating personality measures in R: a tutorial

[This article was first published on [citation needed] » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

A while back I blogged about a paper I wrote that uses genetic algorithms to abbreviate personality measures with minimal human intervention. In the paper, I promised to put the R code I used online, so that other people could download and use it. I put off doing that for a long time, because the code was pretty much spaghetti by the time the paper got accepted, and there are any number of things I’d rather do than spend a weekend rewriting my own code. But one of the unfortunate things about publicly saying that you’re going to do something is that you eventually have to do that something. So, since the paper was published in JRP last week, and several people have emailed me to ask for the code, I spent much of the weekend making the code presentable. It’s not a fully-formed R package yet, but it’s mostly legible, and seems to work more or less ok. You can download the file (gaabbreviate.R) here. The rest of this (very long) post is basically a tutorial on how to use the code, so you probably want to stop reading this now unless you have a burning interest in personality measurement.

Prerequisites and installation

Although you won’t need to know much R to follow this tutorial, you will need to have R installed on your system. Fortunately, R is freely available for all major operating systems. You’ll also need the genalg and psych packages for R, because gaabbreviate won’t run without them. Once you have R installed, you can download and install those packages like so:

install.packages(c(‘genalg’, ‘psych’))

Once that’s all done, you’re ready to load gaabbreviate.R:

source(“/path/to/the/file/gaabbreviate.R”)

…where you make sure to specify the right path to the location where you saved the file. And that’s it! Now you’re ready to abbreviate measures.

Reading in data

The file contains several interrelated functions, but the workhorse is gaa.abbreviate(), which takes a set of item scores and scale scores for a given personality measure as input and produces an abbreviated version of the measure, along with a bunch of other useful information. In theory, you can go from old data to new measure in a single line of R code, with almost no knowledge of R required (though I think it’s a much better idea to do it step-by-step and inspect the results at every stage to make sure you know what’s going on).

The abbreviation function is pretty particular about the format of the input it expects. It takes two separate matrices, one with item scores, the other with scale scores (a scale here just refers to any set of one or more items used to generate a composite score). Subjects are in rows, item or scale scores are in columns. So for example, let’s say you have data from 3 subjects, who filled out a personality measure that has two separate scales, each composed of two items. Your item score matrix might look like this:

3 5 1 1

2 2 4 1

2 4 5 5

…which you could assign in R like so:

items = matrix(c(3,2,2,5,2,2,1,4,5,1,1,5), ncol=3)

I.e., the first subject had scores of 3, 5, 1, and 1 on the four items, respectively; the second subject had scores of 2, 2, 4, and 1… and so on.

Based on the above, if you assume items 1 and 2 constitute one scale, and items 3 and 4 constitute the other, the scale score matrix would be:

8 2

4 5

6 10

Of course, real data will probably have hundreds of subjects, dozens of items, and a bunch of different scales, but that’s the basic format. Assuming you can get your data into an R matrix or data frame, you can feed it directly to gaa.abbreviate() and it will hopefully crunch your data without complaining. But if you don’t want to import your data into R before passing it to the code, you can also pass filenames as arguments instead of matrices. For example:

gaa = gaa.abbreviate(items=”someFileWithItemScores.txt”, scales=”someFileWithScaleScores.txt”, iters=100)

If you pass files instead of data, the referenced text files must be tab-delimited, with subjects in rows, item/scale scores in columns, and a header row that gives the names of the columns (i.e., item names and scale names; these can just be numbers if you like, but they have to be there). Subject identifiers should not be in the files.

Key parameters: stuff you should set every time

Assuming you can get gaabbreviate to read in your data, you can then set about getting it to abbreviate your measure by selecting a subset of items that retain as much of the variance in the original scales as possible. There are a few parameters you’ll need to set; some are mandatory, others aren’t, but should really be specified anyway since the defaults aren’t likely to work well for different applications.

The most important (and mandatory) argument is iters, which is the number of iterations you want the GA to run for. If you pick too high a number, the GA may take a very long time to run if you have a very long measure; if you pick too low a number, you’re going to get a crappy solution. I think iters=100 is a reasonable place to start, though in practice, obtaining a stable solution tends to require several hundred iterations. The good news (which I cover in more detail below) is that you can take the output you get from the abbreviation function and feed it right back in as many times as you want, so it’s not like you need to choose the number of iterations carefully or anything.

The other two key parameters are itemCost and maxItems. The itemCost is what determines the degree to which your measure is compressed. If you want a detailed explanation of how this works, see the definition of the cost function in the paper. Very briefly, the GA tries to optimize the trade-off between number of items and amount of variance explained. Generally speaking, the point of abbreviating a measure is to maximize the amount of explained variance (in the original scale scores) while minimizing the number of items retained. Unfortunately, you can’t do both very well at the same time, because any time you drop an item, you’re also losing its variance. So the trick is to pick a reasonable compromise: a measure that’s relatively short and still does a decent job recapturing the original. The itemCost parameter is what determines the length of that measure. When you set it high, the GA will place a premium on brevity, resulting in a shorter (but less accurate) measure; when you set it low, it’ll allow a longer measure that maximizes fidelity. The optimal itemCost will vary depending on your data, but I find 0.05 is a good place to start, and then you can tweak it to get measures with more or fewer items as you see fit.

The maxItems parameter sets the upper bound on the number of items that will be used to score each scale. The default is 5, but you may find this number too small if you’re trying to abbreviate scales comprised of a large number of items. Again, it’s worth playing around with this to see what happens. Generally speaks, the same trade-off between brevity and fidelity discussed above holds here too.

Given reasonable values for the above arguments, you should be able to feed in raw data and get out an abbreviated measure with minimal work. Assuming you’re reading your data from a file, the entire stream can be as simple as:

gaa = gaa.abbreviate(items=”someFileWithItemScores.txt”, scales=”someFileWithScaleScores.txt”, iters=100, itemCost=0.05, maxItems=5, writeFile=’outputfile.txt’)

That’s it! Assuming your data are in the correct format (and if they’re not, the script will probably crash with a nasty error message), gaabbreviate will do its thing and produce your new, shorter measure within a few minutes or hours, depending on the size of the initial measure. The writeFile argument is optional, and gives the name of an output file you want the measure saved to. If you don’t specify it, the output will be assigned to the gaa object in the above call (note the “gaa = ” part of the call), but won’t be written to file. But that’s not a problem, because you can always achieve the same effect later by calling the gaa.writeMeasure function (e.g., in the above example, gaa.writeMeasure(gaa, file=”outputfile.txt”) would achieve exactly the same thing).

Other important options

Although you don’t really need to do anything else to produce abbreviated measures, I strongly recommend reading the rest of this document and exploring some of the other options if you’re planning to use the code, because some features are non-obvious. Also, the code isn’t foolproof, and it can do weird things with your data if you’re not paying attention. For one thing, by default, gaabbreviate will choke on missing values (i.e., NAs). You can do two things to get around this: either enable pairwise processing (pairwise=T), or turn on mean imputation (impute=T). I say you can do these things, but I strongly recommend against using either option. If you have missing values in your data, it’s really a much better idea to figure out how to deal with those missing values before you run the abbreviation function, because the abbreviation function is dumb, and it isn’t going to tell you whether pairwise analysis or imputation is a sensible thing to do. For example, if you have 100 subjects with varying degrees of missing data, and only have, say, 20 subjects’ scores for some scales, the resulting abbreviated measure is going to be based on only 20 subjects’ worth of data for some scales if you turn pairwise processing on. Similarly, imputing the mean for missing values is a pretty crude way to handle missing data, and I only put it in so that people who just wanted to experiment with the code wouldn’t have to go to the trouble of doing it themselves. But in general, you’re much better off reading your item and scale scores into R (or SPSS, or any other package), processing any missing values in some reasonable way, and then feeding gaabbreviate the processed data.

Another important point to note is that, by default, gaabbreviate will cross-validate its results. What that means is that only half of your data will be used to generate an abbreviated measure; the other half will be used to provide unbiased estimates of how well the abbreviation process worked. There’s an obvious trade-off here. If you use the split-half cross-validation approach, you’re going to get more accurate estimates of how well the abbreviation process is really working, but the fit itself might be slightly poorer because you have less data. Conversely, if you turn cross-validation off (crossVal=F), you’re going to be using all of your data in the abbreviation process, but the resulting estimates of the quality of the solution will inevitably be biased because you’re going to be capitalizing on chance to some extent.

In practice, I recommend always leaving cross-validation enabled, unless you either (a) really don’t care about quality control (which makes you a bad person), or (b) have a very small sample size, and can’t afford to leave out half of the data in the abbreviation process (in which case you should consider collecting more data). My experience has been that with 200+ subjects, you generally tend to see stable solutions even when leaving cross-validation on, though that’s really just a crude rule of thumb that I’m pulling out of my ass, and larger samples are always better.

Other less important options

There are a bunch other less important options that I won’t cover in any detail here, but that are reasonably well-covered in the comments in the source file if you’re so inclined. Some of these are used to control the genetic algorithm used in the abbreviation process. The gaa.abbreviate function doesn’t actually do the heavy lifting itself; instead, it relies on the genalg library to run the actual genetic algorithm. Although the default genalg parameters will work fine 95% of the time, if you really want to manually set the size of the population or the ratio of initial zeros to ones, you can pass those arguments directly. But there’s relatively little reason to play with these parameters, because you can always achieve more or less the same ends simply by adding iterations.

Two other potentially useful options I won’t touch on, though they’re there if you want them, give you the ability to (a) set a minimum bound on the correlation required in order for an item to be included in the scoring equation for a scale (the minR argument), and (b) apply non-unit weightings to the scales (the sWeights argument), in cases where you want to emphasize some scales at the cost of others (i.e., because you want to measure some scales more accurately).

Two examples

The following two examples assume you’re feeding in item and scale matrices named myItems and myScales, respectively:

This will run a genetic algorithm for 500 generations on mean-imputed data with cross-validation turned off, and assign the result to a variable named my.new.shorter.measure. It will probably produce an only slightly shorter measure, because the itemCost is low and up to 10 items are allowed to load on each scale.

This will run 100 iterations with cross-validation enabled (the default, so we don’t need to specify it explicitly) and write the result to a file named shortMeasure.txt. It’ll probably produce a highly abbreviated measure, because the itemCost is relatively high. It also assigns more weight (twice as much, in fact) to the fourth and fifth scales in the measure relative to the first three, as reflected in the sWeights argument (a vector where the ith element indicates the weight of the ith scale in the measure, so presumably there are five scales in this case).

The gaa object

Assuming you’ve read this far, you’re probably wondering what you get for your trouble once you’ve run the abbreviation function. The answer is that you get… a gaa (which stands for GA Abbreviate) object. The gaa object contains almost all the information that was used at any point in the processing, which you can peruse at your leisure. If you’re familiar with R, you’ll know that you can see what’s in the object with the attributes function. For example, if you assigned the result of the abbreviation function to a variable named ‘myMeasure’, here’s what you’d see:

The gaa object has several internal lists (data, settings, results, etc.), each of which in turn contains several other variables. I’ve tried to give these sensible names. In brief:

To see the contents of each of these lists in turn, you can easily inspect them:

So the ‘measure’ attribute in the gaa object contains a bunch of other variables with information about the resulting measure. And here’s a brief summary:

Just give me the measure already!

Supposing you’re not really interested in plumbing the depths of the gaa object or working within R more than is necessary, you might just be wondering what the quickest way to get an abbreviated measure you can work with is. In that case, all you really need to do is pass a filename in the writeFile argument when you call gaa.abbreviate (see the examples given above), and you’ll get out a plain text file that contains all the essential details of the new measure. Specifically you’ll get (a) a mapping from old items to new, so that you can figure out which items are included in the new measure (e.g., a line like “4 45″ means that the 4th item on the new measure is no. 45 in the original set of items), and (b) a human-readable scoring key for each scale (the only thing to note here is that an “R” next to an item indicates the item is reverse-keyed), along with key statistics (coefficient alpha and convergent correlations for the training and validation halves). So if all goes well, you really won’t need to do anything else in R beyond call that one line that makes the measure. But again, I’d strongly encourage you to carefully inspect the gaa object in R to make sure everything looks right. The fact that the abbreviation process is fully automated isn’t a reason to completely suspend all rational criteria you’d normally use when developing a scale; it just means you probably have to do substantially less work to get a measure you’re happy with.

Killing time…

Depending on how big your dataset is (actually, mainly the number of items in the original measure), how many iterations you’ve requested, and how fast your computer is, you could be waiting a long time for the abbreviation function to finish its work. Because you probably want to know what the hell is going on internally during that time, I’ve provided a rudimentary monitoring display that will show you the current state of the genetic algorithm after every iteration. It looks like this (click for a larger version of the image):

This is admittedly a pretty confusing display, and Edward Tufte would probably murder several kittens if he saw it, but it’s not supposed to be a work of art, just to provide some basic information while you’re sitting there twiddling your thumbs (ok, ok, I promise I’ll label the panels better when I have the time to work on it). But basically, it shows you three things. The leftmost three panels show you the basic information about the best measure produced by the GA as it evolves across generations. Respectively, the top, middle,and bottom panels show you the total cost, measure length, and mean variance explained (R^2) as a function of iteration. The total cost can only ever go down, but the length and R^2 can go up or down (though there will tend to be a consistent trajectory for measure length that depends largely on what itemCost you specified).

The middle panel shows you detailed information about how well the GA-produced measure captures variance in each of the scales in the original measure. In this case, I’m abbreviating the 30 facets of the NEO-PI-R. The red dot displays the amount of variance explained in each trait, as of the current iteration.

Finally, the rightmost panel shows you a graphical representation of which items are included in the best measure identified by the GA at each iteration.Each row represents one iteration (i.e., you’re seeing the display as it appears after 200 iterations of a 250-iteration run); black bars represent items that weren’t included, white bars represent items that were included. The point of this display isn’t to actually tell you which items are being kept (you can’t possibly glean that level of information at this resolution), but rather, to give you a sense of how stable the solution is. If you look at the the first few (i.e., topmost) iterations, you’ll see that the solution is very unstable: the GA is choosing very different items as the “best” measure on each iteration. But after a while, as the GA “settles” into a neighborhood, the solution stabilizes and you see only relatively small (though still meaningful) changes from generation to generation. Basically, once the line in the top left panel (total cost) has asymptoted, and the solution in the rightmost panel is no longer changing much if at all, you know that you’ve probably arrived at as good a solution as you’re going to get.

Incidentally, if you use the generic plot() method on a completed gaa object (e.g., plot(myMeasure)), you’ll get exactly the same figure you see here, with the exception that the middle figure will also have black points plotted alongside the red ones.  The black points show you the amount of variance explained in each trait for the cross-validated results. If you’re lucky, the red and black points will be almost on top of each other; if you’re not, the black ones will be considerably to the left of the red ones .

Consider recycling

The last thing I’ll mention, which I already alluded to earlier, is that you can recycle gaa objects. That’s to say, suppose you ran the abbreviation for 100 iterations, only to get back a solution that’s still clearly suboptimal (i.e., the cost function is still dropping rapidly). Rather than having to start all over again, you can simply feed the gaa object back into the abbreviation function in order to run further iterations. And you don’t need to specify any additional parameters (assuming you want to run the same number of iterations you did last time; otherwise you’ll need to specify iters); all of the settings are contained within the gaa object itself. So, assuming you ran the abbreviation function and stored the result in ‘myMeasure’, you can simply do:

myMeasure = gaa.abbreviate(myMeasure, iters=200)

and you’ll get an updated version of the measure that’s had the benefit of an extra 200 iterations. And of course, you can save and load R objects to/from files, so that you don’t need to worry about all of your work disappearing next time you start R. So save(myMeasure, ‘filename.txt’) will save your gaa object for future use, and the next time you need it, you can call myMeasure = load(‘filename.txt’) to get it back (alternatively, you can just save the entire workspace).

Anyway, I think that covers all of the important stuff. There are a few other things I haven’t documented here, but if you’ve read this far, and have gotten the code to work in R, you should be able to start abbreviating your own measures relatively painlessly. If you do use the code to generate shorter measures, and end up with measures you’re happy with, I’d love to hear about it. And if you can’t get the code to work, or can get it to work but are finding issues with the code or the results, I guess I’ll grudgingly accept those emails too. In general, I’m happy to provide support for the code via email provided I have the time. The caveat is that, if you’re new to R, and are having problems with basic things like installing packages or loading files from source, you should really read a tutorial or reference that introduces you to R (Quick-R is my favorite place to start) before emailing me with problems. But if you’re having problems that are specific to the gaabbreviate code (e.g., you’re getting a weird error message, or aren’t sure what something means), feel free to drop me a line and I’ll try to respond as soon as I can.

To leave a comment for the author, please follow the link and comment on their blog: [citation needed] » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.