Abstract Data Type Operations in R

[This article was first published on John Myles White: Die Sudelbücher » Statistics, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

This morning, I got a chance to read enough of the R Language Definition to finish my implementations of push and pop. While I was at it, I also wrote implementations of unshift, shift, queue and dequeue. Here they are:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
push <- function(vector, item)
{
  vector.lvalue.symbol <- substitute(vector)
  new.expression <- paste(vector.lvalue.symbol,
                          ' <- c(', vector.lvalue.symbol, ', ', item, ')',
                          sep = '')
  eval(parse(text = new.expression),
       sys.frame(sys.parent()))
}
 
pop <- function(vector)
{
  vector.lvalue.symbol <- substitute(vector)
  temp.env <- new.env()
  last.element <- eval(parse(text = paste(vector.lvalue.symbol,
                                          '[length(', vector.lvalue.symbol, ')]',
                                          sep = '')),
                       sys.frame(sys.parent()))
  assign('tmp', last.element, envir = temp.env)
  eval(parse(text = paste(vector.lvalue.symbol,
                          ' <- ', vector.lvalue.symbol,
                          '[-length(', vector.lvalue.symbol, ')]',
                          sep = '')),
       sys.frame(sys.parent()))
  return(get('tmp', envir = temp.env))
}
 
unshift <- function(vector, item)
{
  vector.lvalue.symbol <- substitute(vector)
  new.expression <- paste(vector.lvalue.symbol,
                          ' <- c(', item, ', ', vector.lvalue.symbol, ')',
                          sep = '')
  eval(parse(text = new.expression), sys.frame(sys.parent()))
}
 
shift <- function(vector)
{
  vector.lvalue.symbol <- substitute(vector)
  temp.env <- new.env()
  last.element <- eval(parse(text = paste(vector.lvalue.symbol,
                                          '[1]',
                                          sep = '')),
                       sys.frame(sys.parent()))
  assign('tmp', last.element, envir = temp.env)
  eval(parse(text = paste(vector.lvalue.symbol,
                          ' <- ', vector.lvalue.symbol,
                          '[-1]',
                          sep = '')),
       sys.frame(sys.parent()))
  return(get('tmp', envir = temp.env))
}
 
queue <- function(vector, item)
{
  vector.lvalue.symbol <- substitute(vector)
  new.expression <- paste(vector.lvalue.symbol,
                          ' <- c(', vector.lvalue.symbol, ', ', item, ')',
                          sep = '')
  eval(parse(text = new.expression), sys.frame(sys.parent()))
}
 
dequeue <- function(vector)
{
  vector.lvalue.symbol <- substitute(vector)
  temp.env <- new.env()
  last.element <- eval(parse(text = paste(vector.lvalue.symbol,
                                          '[1]',
                                          sep = '')),
                       sys.frame(sys.parent()))
  assign('tmp', last.element, envir = temp.env)
  eval(parse(text = paste(vector.lvalue.symbol,
                          ' <- ', vector.lvalue.symbol,
                          '[-1]',
                          sep = '')),
       sys.frame(sys.parent()))
  return(get('tmp', envir = temp.env))
}

In general, the secret to writing these pseudo-macros is to use substitute. For the three functions that need to return a value as well as edit the passed parameter, you also need to use new.env, assign and get to edit the relevant symbol tables during function execution.

To check that these functions work, try the following examples after defining the functions above:

1
2
3
4
5
6
7
8
9
10
11
12
13
v <- c(1)
push(v, 2)
v
pop(v) == 2
v
unshift(v, 0)
v
shift(v) == 0
v
queue(v, 2)
v
dequeue(v) == 1
v

To leave a comment for the author, please follow the link and comment on their blog: John Myles White: Die Sudelbücher » Statistics.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)