[This article was first published on Learning R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
This is the 13th post in a series attempting to recreate the figures in Lattice: Multivariate Data Visualization with R (R code available here) with ggplot2.
Previous parts in this series: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8, Part 9, Part 10, Part 11, Part 12.
Chapter 14 – New Trellis Displays
Topics covered:
- Examples of S3 and S4 methods
- Examples of new high level functions
Figure 14.1
> library(lattice) > library(ggplot2) > library(latticeExtra) |
lattice
> pl <- xyplot(sunspot.year, aspect = "xy", strip = FALSE, + strip.left = TRUE, cut = list(number = 4, overlap = 0.05)) > print(pl) |
ggplot2
> sunspot.g <- function(data, number = 4, overlap = 0.05) { + data <- as.data.frame(data) + data$id <- if (is.ts(data$x)) + time(data$x) + else seq_along(data$x) + intrv <- as.data.frame(co.intervals(data$id, number, + overlap)) + x <- sort(unique(data$id)) + intervals <- ldply(x, function(x) { + t(as.numeric(x < intrv$V2 & x > intrv$V1)) + }) + tmp <- melt(cbind(x, intervals), id.var = 1) + tmp <- tmp[tmp$value > 0, 1:2] + tmp <- rename(tmp, c(x = "id")) + merge(data, tmp) + } |
> pg <- ggplot(sunspot.g(sunspot.year), aes(id, x)) + geom_line() + + facet_wrap(~variable, scales = "free_x", ncol = 1, + as.table = FALSE) + opts(strip.background = theme_blank(), + strip.text.x = theme_blank()) + opts(panel.margin = unit(-0.25, + "lines")) + xlab("Time") > print(pg) |
Figure 14.2
> data(biocAccess, package = "latticeExtra") |
lattice
> ssd <- stl(ts(biocAccess$counts[1:(24 * 30 * 2)], frequency = 24), + "periodic") |
> pl <- xyplot(ssd, xlab = "Time (Days)") > print(pl) |
ggplot2
> time <- data.frame(data = ts(biocAccess$counts[1:(24 * + 30 * 2)], frequency = 24)) > time$id <- as.numeric(time(time$data)) > time$data <- as.numeric(time$data) > time.series <- as.data.frame(ssd$time.series) > time.series <- cbind(time, time.series) > time.series <- melt(time.series, id.vars = "id") |
> pg <- ggplot(time.series, aes(id, value)) + geom_line() + + facet_grid(variable ~ ., scales = "free_y") + xlab("Time (Days)") > print(pg) |
Figure 14.3
> library("flowViz") > data(GvHD, package = "flowCore") |
lattice
> pl <- densityplot(Visit ~ `FSC-H` | Patient, data = GvHD) > print(pl) |
ggplot2
It should be possible to produce a similar graph in ggplot2, however I was not able to figure out how to extract the relevant data from an object of class "flowSet". |
Figure 14.4
> library("hexbin") > data(NHANES) |
lattice
> pl <- hexbinplot(Hemoglobin ~ TIBC | Sex, data = NHANES, + aspect = 0.8) > print(pl) |
ggplot2
> pg <- ggplot(NHANES, aes(TIBC, Hemoglobin)) + geom_hex() + + facet_grid(~Sex) + opts(aspect.ratio = 0.8) > print(pg) |
Figure 14.5
> data(Chem97, package = "mlmRev") |
lattice
> panel.piechart <- function(x, y, labels = as.character(y), + edges = 200, radius = 0.8, clockwise = FALSE, init.angle = if (clockwise) 90 else 0, + density = NULL, angle = 45, col = superpose.polygon$col, + border = superpose.polygon$border, lty = superpose.polygon$lty, + ...) { + stopifnot(require("gridBase")) + superpose.polygon <- trellis.par.get("superpose.polygon") + opar <- par(no.readonly = TRUE) + on.exit(par(opar)) + if (panel.number() > 1) + par(new = TRUE) + par(fig = gridFIG(), omi = c(0, 0, 0, 0), mai = c(0, + 0, 0, 0)) + pie(as.numeric(x), labels = labels, edges = edges, + radius = radius, clockwise = clockwise, init.angle = init.angle, + angle = angle, density = density, col = col, + border = border, lty = lty) + } > piechart <- function(x, data = NULL, panel = "panel.piechart", + ...) { + ocall <- sys.call(sys.parent()) + ocall[[1]] <- quote(piechart) + ccall <- match.call() + ccall$data <- data + ccall$panel <- panel + ccall$default.scales <- list(draw = FALSE) + ccall[[1]] <- quote(lattice::barchart) + ans <- eval.parent(ccall) + ans$call <- ocall + ans + } > pl <- piechart(VADeaths, groups = FALSE, xlab = "") > print(pl) |
ggplot2
> pg <- ggplot(as.data.frame.table(VADeaths), aes(x = factor(1), + y = Freq, fill = Var1)) + geom_bar(width = 1) + facet_wrap(~Var2, + scales = "free_y") + coord_polar(theta = "y") > print(pg) |
To leave a comment for the author, please follow the link and comment on their blog: Learning R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.