Site icon R-bloggers

ggplot2 Version of Figures in “Lattice: Multivariate Data Visualization with R” (Part 11)

[This article was first published on Learning R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

This is the 11th post in a series attempting to recreate the figures in Lattice: Multivariate Data Visualization with R (R code available here) with ggplot2.

Previous parts in this series: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8, Part 9, Part 10.


Chapter 11 – Manipulating the “trellis” object

Topics covered:

  • Methods for “trellis” objects
  • Tukey mean-difference plot
  • Other specialized manipulations


Figure 11.1

> library(lattice)
> library(ggplot2)

lattice

> dp.uspe <- dotplot(t(USPersonalExpenditure), groups = FALSE,
+     index.cond = function(x, y) median(x), layout = c(1,
+         5), type = c("p", "h"), xlab = "Expenditure (billion dollars)")
> dp.uspe.log <- dotplot(t(USPersonalExpenditure), groups = FALSE,
+     index.cond = function(x, y) median(x), layout = c(1,
+         5), scales = list(x = list(log = 2)), xlab = "Expenditure (billion dollars)")
> plot(dp.uspe, split = c(1, 1, 2, 1), more = TRUE)
> plot(dp.uspe.log, split = c(2, 1, 2, 1), more = FALSE)

ggplot2

> library(ggextra)
> p <- ggplot(melt(USPersonalExpenditure), aes(X2, value,
+     ymin = 0, ymax = value)) + geom_point() + coord_flip() +
+     facet_wrap(~X1, ncol = 1) + ylab("Expenditure (billion dollars)")
> p1 <- p + geom_linerange()
> p2 <- p + scale_y_log2()
> print(arrange(p1, p2))

Figure 11.2

lattice

> state <- data.frame(state.x77, state.region, state.name)
> state$state.name <- with(state, reorder(reorder(state.name,
+     Frost), as.numeric(state.region)))
> dpfrost <- dotplot(state.name ~ Frost | reorder(state.region,
+     Frost), data = state, layout = c(1, 4), scales = list(y = list(relation = "free")))
> plot(dpfrost, panel.height = list(x = c(16, 13, 9, 12),
+     unit = "null"))

ggplot2

> state$state.region <- with(state, reorder(state.region,
+     Frost))
> pg <- ggplot(state, aes(Frost, state.name)) + geom_point() +
+     facet_grid(state.region ~ ., scales = "free_y", space = "free",
+         as.table = F)
> print(pg)

Figure 11.3

lattice

> plot(dpfrost, panel.height = list(x = c(16, 13, 9, 12),
+     unit = "null"))
> print(update(trellis.last.object(), layout = c(1, 1))[2])

ggplot2

> pg <- pg %+% subset(state, state.region == "West") +
+     facet_wrap(~state.region, scales = "free_y")
> print(pg)

Figure 11.4

lattice

> npanel <- 12
> rot <- list(z = seq(0, 30, length = npanel), x = seq(0,
+     -80, length = npanel))
> quakeLocs <- cloud(depth ~ long + lat, quakes, pch = ".",
+     cex = 1.5, panel = function(..., screen) {
+         pn <- panel.number()
+         panel.cloud(..., screen = list(z = rot$z[pn],
+             x = rot$x[pn]))
+     }, xlab = NULL, ylab = NULL, zlab = NULL, scales = list(draw = FALSE),
+     zlim = c(690, 30), par.settings = list(axis.line = list(col = "transparent")))
> pl <- quakeLocs[rep(1, npanel)]
> print(pl)

ggplot2

True 3d not supported in ggplot2.

Figure 11.5

> data(Chem97, package = "mlmRev")

lattice

> ChemQQ <- qq(gender ~ gcsescore | factor(score), Chem97,
+     f.value = ppoints(100), strip = strip.custom(style = 5))
> pl <- tmd(ChemQQ)
> print(pl)

ggplot2

> q <- function(x, probs = ppoints(100)) {
+     data.frame(q = probs, value = quantile(x, probs))
+ }
> Chem97.q <- ddply(Chem97, c("gender", "score"), function(df) q(df$gcsescore))
> Chem97.df <- recast(Chem97.q, score + q ~ gender, id.var = 1:3)
> pg <- ggplot(Chem97.df, aes(M, F)) + geom_point(aes(x = (M +
+     F)/2, y = F - M)) + facet_wrap(~score) + xlab("mean") +
+     ylab("difference")
> print(pg)

Figure 11.6

> library("latticeExtra")
> data(biocAccess)

lattice

> baxy <- xyplot(log10(counts) ~ hour | month + weekday,
+     biocAccess, type = c("p", "a"), as.table = TRUE,
+     pch = ".", cex = 2, col.line = "black")
> dimnames(baxy)$month <- month.name[1:5]
> pl <- useOuterStrips(baxy)
> print(pl)

ggplot2

> pg <- ggplot(biocAccess, aes(hour, log10(counts))) +
+     geom_point(colour = "steelblue", size = 1) + geom_line(stat = "summary",
+     fun.y = mean) + facet_grid(weekday ~ month)
> print(pg)

To leave a comment for the author, please follow the link and comment on their blog: Learning R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.