Site icon R-bloggers

A probability exercise on the Bernoulli distribution

[This article was first published on Statistic on aiR, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
What is the probability, flipping a coin 8 times, to obtain the sequence HHTTTHTT? (H = head; T= tail)

The theory teaches us that to solve this question, we can simply use the following formula:

$$f(x)=P(X=x)=B(n,p)=\begin{pmatrix}n\\ x \end{pmatrix} \cdot p^x \cdot q^{n-x}=\frac{n!}{x!(n-x)!}$$

To solve a problem like this, we can use in R the function dbinom(x, n, p). The coin flipping follow a binomial distribution, in which every event can be H or T. Suppose that T is the number of successes x (in this case x = 5), while n is the number independet experiments (in this case n = 8). The probability of success is p = 0.5. Put these data into R and get the answer:

dbinom(5, 8, 0.5)
[1] 0.21875


The probability of obtaining that particular sequence is equal to 21,875%.
What probability we would have obtained if we had chosen H as the success (ie by imposing x = 3)?

To leave a comment for the author, please follow the link and comment on their blog: Statistic on aiR.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.