[This article was first published on Gregor Gorjanc, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Jarrod Hadfield published MCMCglmm package on CRAN. The package can fit generalised linear mixed models via MCMC methods. Bellow is the abstract from the vignette. The list of supported models is quite impressive. Nice job Jarrod! This is not the first package by Jarrod – there is also interesting (at least to me) package MasterBayes.
MCMCglmm is a package for fitting Generalised Linear Mixed Models using Markov chain Monte Carlo techniques. Most commonly used distributions like the normal and the Poisson are supported together with some useful but less popular ones like the zero-inflated Poisson and the multinomial. Missing values and left, right and interval censoring are accommodated for all traits. The package also supports multi-trait models where the multiple responses can follow different types of distribution. The package allows various residual and random effect variance structures to be specified including heterogeneous variances, unstructured covariance matrices and random regression (e.g. random slope models). Three special types of variance structure that can be specified are those associated with pedigrees (animal models), phylogenies (the comparative method) and measurement error (meta-analysis). The package makes heavy use of results in Sorensen and Gianola [2002] and Davis [2006] which taken together result in what is hopefully a fast and effcient routine. Most small to medium sized problems should take seconds to a few minutes, but large problems (> 20,000 records) are possible. My interest is in evolutionary biology so there are also several functions for applying tensor analysis [Rice, 2004] to real data and functions for visualising and comparing matrices.
To leave a comment for the author, please follow the link and comment on their blog: Gregor Gorjanc.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.